-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiment.py
395 lines (327 loc) · 14.2 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from collections import defaultdict
import time
import pandas as pd
# from sentence_transformers import SentenceTransformer, util
import json
import re
from utils import set_seed, load_json, save_json
import random
import numpy as np
import json
import os
# import logging
from tqdm import tqdm
# from inference.interact import *
from prompts.prompt_template import FORMAT_ENTRY_INPUT
from func_timeout import func_timeout, FunctionTimedOut
import unicodedata
from openai import OpenAI
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
import torch
from peft import PeftModel
api_key = ""
def interact_openai(entries, model_name, prompt_type, results_file, lora_adapter_path=None):
# 最大等待时间(秒)
max_wait_time = 10
# 加载已完成的响应
if os.path.exists(results_file):
with open(results_file, 'r', encoding='utf-8') as f:
results = json.load(f)
else:
results = []
# 提取已处理的输入
completed_entry_ids = {result['entry_id'] for result in results}
client = OpenAI(
api_key=api_key,
base_url="https://api3.apifans.com/v1"
)
# 处理每个输入
for entry in entries:
if entry["entry_id"] in completed_entry_ids:
# print(f"Skipping already processed entry: {entry["entry_id"]}")
continue
system_prompt = entry[prompt_type]
user_prompt = entry["query"]
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
try:
completion = client.chat.completions.create(
messages=messages,
model=model_name,
timeout=max_wait_time, # 设置超时时间
)
message = completion.choices[0].message
content = unicodedata.normalize('NFKC', message.content)
results.append({
"query": entry["query"],
"api_call_ground_truth": entry["api_call_ground_truth"],
"response": content,
"entry_id": entry["entry_id"],
"history_length": entry["history_length"]
})
except Exception as e:
print(f"Error for '{entry['entry_id']}': {e}")
# 实时写入JSON文件
with open(results_file, 'w', encoding='utf-8') as f:
json.dump(results, f, ensure_ascii=False, indent=4)
print("All responses have been processed and saved.")
return results
eos_tokens = {
"Meta-Llama-3-8B": "<|eot_id|>",
"Meta-Llama-3-8B-Instruct": "<|eot_id|>",
"llama3-lora": "<|eot_id|>",
"Llama-2-7b-hf": "<|eot_id|>",
"Llama-2-7b-chat-hf": "<|eot_id|>",
"Qwen2.5-7B-Instruct": "<|endoftext|>",
"Mistral-7B-Instruct-v0.3": "<|endoftext|>",
# "claude": interact_other,
"vicuna-7b-v1.5": "</s>",
}
# Define a function to interact with Hugging Face models
def interact_hf(entries, model_name, prompt_type, results_file, lora_adapter_path=None):
eos_token = eos_tokens.get(model_name, "")
# 加载已完成的响应
if os.path.exists(results_file):
with open(results_file, 'r', encoding='utf-8') as f:
results = json.load(f)
else:
results = []
# 提取已处理的输入
completed_entry_ids = {result['entry_id'] for result in results}
model_path = "/data/models/"
if model_name == "llama3-lora_sft" or model_name == "llama3-lora_dpo" or model_name == "llama3-lora_sft-dpo":
# 基础模型路径
base_model_path = model_path + "Meta-Llama-3-8B-Instruct"
# 加载基础模型
base_model = AutoModelForCausalLM.from_pretrained(
base_model_path,
torch_dtype=torch.bfloat16, # 使用 BF16 精度
device_map=0)
# 加载 LoRA 适配器并合并到基础模型
model = PeftModel.from_pretrained(base_model, lora_adapter_path)
model = model.merge_and_unload() # 合并 LoRA 权重到基础模型
eos_token = eos_tokens.get("Meta-Llama-3-8B-Instruct", "")
else:
base_model_path = model_path + model_name
model = AutoModelForCausalLM.from_pretrained(
base_model_path,
torch_dtype=torch.bfloat16, # 使用 BF16 精度
device_map=0)
eos_token = eos_tokens.get(model_name, "")
# 加载 tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
# 将模型设置为评估模式
model.eval()
# 将模型移动到 GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# pipeline = transformers.pipeline(
# "text-generation",
# # model=base_model_path,
# model=model,
# tokenizer=tokenizer,
# model_kwargs={"torch_dtype": torch.bfloat16},
# device=0,
# # device_map="auto",
# )
for entry in entries:
if entry["entry_id"] in completed_entry_ids:
# print(f"Skipping already processed entry: {entry["entry_id"]}")
continue
system_prompt = entry[prompt_type]
user_prompt = entry["query"]
if model_name == "Mistral-7B-Instruct-v0.3":
messages = [
{"role": "user", "content": system_prompt + "\nInstruction: " + user_prompt}
]
else:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
if model_name == "vicuna-7b-v1.5":
prompt = system_prompt + "Instruction: " + user_prompt
prompt = f"USER: {prompt} ASSISTANT:"
else:
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids(eos_token)
]
# if model_name == "llama3-lora_sft" or model_name == "llama3-lora_dpo" or model_name == "llama3-lora_sft-dpo":
# 将输入文本编码为模型输入
inputs = tokenizer(prompt,
truncation=True, # 自动截断
max_length=4000, # 设置最大长度
return_tensors="pt").to(device)
truncated_text = tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
# 生成输出
with torch.no_grad(): # 禁用梯度计算
outputs = model.generate(
**inputs,
# input_ids=inputs["input_ids"],
max_new_tokens=256,
# max_length=50, # 生成的最大长度
num_return_sequences=1, # 返回的序列数
temperature=0.1, # 控制生成多样性
# top_p=0.9, # 核采样参数
eos_token_id=terminators,
)
# 解码生成结果
response = tokenizer.decode(outputs[0], skip_special_tokens=True)[len(truncated_text):]
# response = tokenizer.decode(outputs[0])[len(truncated_text):]
# else:
# inputs = tokenizer(prompt,
# truncation=True, # 自动截断
# max_length=4000, # 设置最大长度
# return_tensors="pt").to(device)
# inputs = tokenizer(prompt,
# truncation=True, # 自动截断
# max_length=4000, # 设置最大长度
# return_tensors="pt").to(device)
# truncated_text = tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
# with torch.no_grad(): # 禁用梯度计算
# outputs = model.generate(
# **inputs,
# # input_ids=inputs["input_ids"],
# max_new_tokens=256,
# # max_length=50, # 生成的最大长度
# # do_sample=True,
# # num_return_sequences=1, # 返回的序列数
# temperature=0.1, # 控制生成多样性
# # top_p=0.1, # 核采样参数
# eos_token_id=terminators,
# )
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)[len(truncated_text):]
# with torch.no_grad():
# output = pipeline(
# prompt,
# max_new_tokens=256,
# truncation=True,
# eos_token_id=terminators,
# do_sample=True,
# temperature=0.1,
# # top_p=0.9,
# )
# response = output[0]["generated_text"][len(prompt):]
results.append({
"query": entry["query"],
"api_call_ground_truth": entry["api_call_ground_truth"],
"response": response,
"entry_id": entry["entry_id"],
"history_length": entry["history_length"]
})
# 实时写入JSON文件
with open(results_file, 'w', encoding='utf-8') as f:
json.dump(results, f, ensure_ascii=False, indent=4)
print("All responses have been processed and saved.")
return results
def calculate_scores(results, history_type, model_name):
scores_tool = 0
scores_parameters = 0
for entry in results:
if not entry["response"]:
continue
# response = json.loads(entry["response"])
pattern = r'\{.*"tool_name":\s*".*?",\s*"parameters":\s*\{.*?\}\}'
match = re.search(pattern, entry["response"])
# '{"tool_name": "<Data>.<Pet Store>.<getInventory>", "parameters": "{}"}'
# {'tool_name': '<Database>.<aaaa>.<Get API Current Version>', 'parameters': {'apiId': ''}}
if match:
json_str = match.group(0)
try:
# 将字符串解析为 JSON 对象
response = json.loads(json_str)
# print(response)
except json.JSONDecodeError:
print("Not valid JSON format")
continue
else:
print(f"No valid JSON found in response for entry {entry['entry_id']}")
continue
# json_match = re.search(r'\{.*?\}', entry["response"])
# if json_match:
# response = json.loads(json_match.group())
# else:
# print(f"No valid JSON found in response for entry {entry['entry_id']}")
# continue
if entry["api_call_ground_truth"]["tool_name"] == response["tool_name"]:
scores_tool += 1
if entry["api_call_ground_truth"]["parameters"] == response["parameters"]:
scores_parameters += 1
print("Model:", model_name)
print(f"Tool accuracy ({history_type}):", f"{scores_tool/len(results)}") # f"({scores_tool / len(results):.2%})"
print(f"Parameters accuracy ({history_type}):", f"{scores_parameters/len(results)}") # f"({scores_parameters / len(results):.2%})")
# return scores
interact_functions = {
"gpt-4o": interact_openai,
"gpt-4o-mini": interact_openai,
"gpt-3.5-turbo": interact_openai,
# "mistral": interact_hf,
"Meta-Llama-3-8B": interact_hf,
"Meta-Llama-3-8B-Instruct": interact_hf,
"llama3-lora_sft": interact_hf,
"llama3-lora_dpo": interact_hf,
"llama3-lora_sft-dpo": interact_hf,
"Llama-2-7b-hf": interact_hf,
"Llama-2-7b-chat-hf": interact_hf,
"Qwen2.5-7B-Instruct": interact_hf,
"Mistral-7B-Instruct-v0.3": interact_hf,
"vicuna-7b-v1.5": interact_hf,
}
prompt_types = {
"p": "instruction_preferred",
"r": "instruction_ratings",
"c": "instruction_chronological",
"wo_history": "instruction_wo_history"
}
# Example usage
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# parser.add_argument("--data_path", default=None, type=str, required=True,
# help="The input data dir. Should contain the .tsv files for the task.")
parser.add_argument("--model_name", default=None, type=str, required=True, help="The base model name.")
parser.add_argument("--history_type", default=None, type=str, required=True, help="")
parser.add_argument("--lora_adapter_path", default=None, type=str, required=False, help="")
# parser.add_argument("--num_epochs", default=5, type=int, required=True,
# help="Train epochs.")
args = parser.parse_args()
# a = {"tool_name": "Airbnb Search","api_name": "Search Property by_place","parameters": {"place": 50}}
# a = str(a)
# b = eval(a)
model_name = args.model_name # gpt-4o-mini, gpt-4o, gpt-3.5-turbo, Meta-Llama-3-8B-Instruct
# if model_name == "llama3-8b":
# model_name = "Meta-Llama-3-8B-Instruct"
history_type = args.history_type # preferred, ratings, chronological
lora_adapter_path = args.lora_adapter_path
# prompt_template = FORMAT_ENTRY_INPUT
# results = []
user_entries = load_json(f"dataset_test/user_entries_test_{history_type}.json") # [:20]
interact_func = interact_functions.get(model_name, lambda a,b,c,d,e: f"Model {model_name} not recognized.")
prompt_type = prompt_types.get(history_type, f"History type {history_type} not recognized")
# 输出文件名
results_file = f"{history_type}_{model_name}.json"
results_path="results/"
results = interact_func(user_entries, model_name, prompt_type, results_path+results_file, lora_adapter_path)
calculate_scores(results, history_type, model_name)
save_json(results, results_file, file_path=results_path)
# for entry in user_entries[:20]:
# try:
# response = interact_func(model_name, messages)
# except FunctionTimedOut:
# print('task func_timeout')
# continue
print()
# prompt = "Explain the significance of uncertainty estimation in AI models."
# models = ["gpt-4", "gpt-3.5-turbo", "mistral", "llama", "qwen", "claude"]
# outputs = run_experiment(models, prompt)
# for model, output in outputs.items():
# print(f"\nModel: {model}\nOutput: {output}\n")