forked from LIMO-EEG-Toolbox/limo_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
limo_itc.m
524 lines (316 loc) · 14.8 KB
/
limo_itc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
function limo_itc(varargin)
% Function to batch process Inter-Trial Coherence (ITC) from multiple
% conditions in limo. Partly adapted from limo_batch.
%
%
% FORMAT limo_itc
% limo_itc(option,model,contrast)
%
% INPUT if empty uses GUI
% option should be 'model specification' 'contrast only' or 'both'
% model is a structure that specifiy information to build a model
% model.set_files: a cell array of EEG.set (full path) for the different subjects
% model.cat_files: a cell array of categorial variable files
% model.cont_files: a cell array of continuous variable files
% model.defaults: specifiy the parameters to use for each subject
% model.defaults.analysis 'Time' 'Frequency' or 'Time-Frequency'
% model.defaults.fullfactorial 0/1
% model.defaults.zscore 0/1
% model.defaults.start starting time in ms
% model.defaults.end ending time in ms
% model.defaults.lowf starting point in Hz
% model.defaults.highf ending point in Hz
% model.defaults.bootstrap 0/1
% model.defaults.tfce 0/1
% model.defaults.channloc common channel locations (necessary if bootstrap = 1)
% contrast is a structure that specify which contrasts to run for which subject
% contrast.LIMO_files: a list of LIMO.mat (full path) for the different subjects
% this is optional if option 'both' is selected
% contrast.mat: a matrix of contrasts to run (assumes the same for all subjects)
%
% OUTPUT none - generate a directory per subject with GLM results in it
%
% see also limo_eeg limo_batch limo_import_t limo_import_f limo_import_tf and psom in external folder
%
%
% Andrew Stewart, May 2014 - adapted from limo_batch
% -----------------------------
% Copyright (C) LIMO Team 2014
% psom stuff see mode for parallel computing
opt.mode = 'session'; % run one after the other in the current matlab session
opt.flag_pause = false;
global EEGLIMO
global LIMO
%% what to do
itc_prompt = sprintf('LIMO ITC allows loading of Inter-Trial Coherence (ITC) data and use of LIMO tools on that data. \n\n It requires that that data has previously been generated and saved in EEG.etc.itc for each subject.');
%helpdlg(itc_prompt, 'Using LIMO ITC')
option='model specification';
% ITC gui - loading dataset list and trim info
[model.set_files,model.cat_files,model.cont_files,model.defaults] = limo_itc_gui;
model.info = 'Running ITC data loading';
for subject = 1:size(model.set_files,1)
subpath = fileparts(model.set_files{subject});
cd(subpath);
limo_itc_import_data(model.set_files{subject},model.cat_files,model.cont_files,model.defaults);
load('ITC_analysis/LIMO.mat')
LIMO.Analysis = 'ITC';
EEGLIMO=pop_loadset(LIMO.data.data);
cd 'ITC_analysis'
disp('loading ITC data...');
% Let's treat 2-condition ITC data like TF data with 2 trials
Yitc = EEGLIMO.etc.itc(:,LIMO.data.trim_low_f:LIMO.data.trim_high_f,LIMO.data.trim1:LIMO.data.trim2);
if size(Yitc,1)/EEGLIMO.nbchan == 2 % If double electrode count in ITC data, check for 2 now
disp('*** - Found double electrode count in ITC data - taking as two conditions')
model.Ncond{subject} = 2;
%model.info = strcat(model.info,' x2 electrode count in ITC data, taking as two conditions');
if model.Ncond{subject} ~= model.Ncond{1}
subject; error('Some subjects appear to have differing numbers of conditions')
end
Y = nan(EEGLIMO.nbchan,size(Yitc,2),size(Yitc,3),2);
Y(:,:,:,1) = abs(Yitc(1:EEGLIMO.nbchan,:,:));
Y(:,:,:,2) = abs(Yitc(EEGLIMO.nbchan+1:end,:,:));
% Load a 4D Y with ITC data
LIMO.data.size4D= size(Y);
LIMO.data.size3D= [LIMO.data.size4D(1) LIMO.data.size4D(2)*LIMO.data.size4D(3) LIMO.data.size4D(4)];
elseif size(Yitc,1)/EEGLIMO.nbchan == 3 % If double electrode count in ITC data, check for 3 now
disp('*** - Found triple electrode count in ITC data - taking as three conditions')
model.Ncond{subject} = 3;
%model.info = strcat(model.info,' x3 electrode count in ITC data, taking as three conditions');
if model.Ncond{subject} ~= model.Ncond{1}
subject; error('Some subjects appear to have differing numbers of conditions')
end
Y = nan(EEGLIMO.nbchan,size(Yitc,2),size(Yitc,3),3);
Y(:,:,:,1) = abs(Yitc(1:EEGLIMO.nbchan,:,:));
Y(:,:,:,2) = abs(Yitc(EEGLIMO.nbchan+1:EEGLIMO.nbchan*2,:,:));
Y(:,:,:,3) = abs(Yitc(EEGLIMO.nbchan*2+1:EEGLIMO.nbchan*3,:,:));
% Load a 4D Y with ITC data
LIMO.data.size4D= size(Y);
LIMO.data.size3D= [LIMO.data.size4D(1) LIMO.data.size4D(2)*LIMO.data.size4D(3) LIMO.data.size4D(4)];
elseif size(Yitc,1)/EEGLIMO.nbchan == 1
model.Ncond{subject} = 1;
%model.info = strcat(model.info,' x3 electrode count in ITC data, taking as three conditions');
if model.Ncond{subject} ~= model.Ncond{1}
subject; error('Some subjects appear to have differing numbers of conditions')
end
model.info{subject} = '1 condition';
Y = nan(EEGLIMO.nbchan,size(Yitc,2),size(Yitc,3),1);
Y(:,:,:,1) = abs(Yitc(1:EEGLIMO.nbchan,:,:));
else
error('Check ITC data length')
end
LIMO.model = model;
save Y Y -v7.3;
save LIMO LIMO -v7.3;
model.itc_data{subject} = pwd;
clear Yitc
end
disp('Finished loading')
% ITC gui 2 - get stat test selection
model.test_select = limo_itc_gui2;
disp(model.test_select)
current = pwd;
% mkdir('limo_batch_report')
% Have a check of set files and data being in agreement
%% Check test, run
original_LIMO_dir = model.itc_data{1};
if model.test_select{1} == 1
%% 1-samp t
% Build selected ITC data into correct format
Nsub = length(model.set_files);
Ncond = model.Ncond{1};
total_elecs = length(model.defaults.chanlocs);
disp(model.test_select{2})
Ybig = nan(total_elecs,size(Y,2),size(Y,3),Nsub*Ncond);
% Populate Ybig with ITC data already saved
for sub = 1:Nsub
cd(model.itc_data{sub})
load LIMO
load Y
for elec = 1:size(Y,1)
org_elec = LIMO.data.chanlocs(elec).urchan; % Find original elec index
j=0; % Additional cond count
for cond = 1:Ncond
Ybig(org_elec,:,:,sub+j) = Y(elec,:,:,cond);
j=j+1;
end
% Leave the rest as nan
end
end
% --- Check values
if model.defaults.bootstrap == 1
nboot = 1000;
else
nboot = [];
end
tfce = model.defaults.tfce;
if tfce == 1 && isfield(LIMO.data,'neighbouring_matrix') == 0 % Check we have neighb matrix. If not, create it.
EEGLIMO.chanlocs = model.defaults.chanlocs;
neighbdis = inputdlg('What neighbourhood distance should be used for TFCE neighbourhood matrix? (Perhaps 0.37 for 128 electrode systems)','Enter neighb distance',1,{'0.37'});
neighbdis = str2num(neighbdis{1});
[tmpneighbs, LIMO.data.neighbouring_matrix] = limo_get_channeighbstructmat(EEGLIMO,neighbdis);
end
Analysis_type = 'ITC';
parameters = 1;
LIMO.data.cond_tested = 1;
LIMO.data.chanlocs = model.defaults.chanlocs;
save LIMO LIMO
% Run stats on this Ybig
cd(original_LIMO_dir);
limo_random_robust(model.test_select{1},Ybig,parameters,nboot,tfce);
% Plot
plotnow = 0;
if plotnow == 1
load one_sample_ttest_parameter_1
limo_display_results_tf(LIMO, one_sample(:,:,:,4),1,['ITC ', model.test_select{2}])
end
elseif model.test_select{1} == 2
%% 2-samp t-test
disp(model.test_select{2})
conds1 = 1;
conds2 = 2;
if model.Ncond{1} > 2
cond_text{1} = sprintf('There are %d conditions. Which should be tested here? \n\nChoose first condition(s):', model.Ncond{1});
cond_text{2} = 'Second condition(s) to test:';
cond_tested = inputdlg(cond_text,'Which conditions should be tested?',1,{'1','2,3'});
conds1 = str2num(cond_tested{1});
conds2 = str2num(cond_tested{2});
end
% Build selected ITC data into correct format
Nsub = length(model.set_files);
Nconds = [length(conds1) length(conds2)];
total_elecs = length(model.defaults.chanlocs);
Y1 = nan(total_elecs,size(Y,2),size(Y,3),Nsub*Nconds(1));
Y2 = nan(total_elecs,size(Y,2),size(Y,3),Nsub*Nconds(2));
% Populate Y1 and Y2 with ITC data already saved
for sub = 1:Nsub
cd(model.itc_data{sub})
load LIMO
load Y
for elec = 1:size(Y,1)
org_elec = LIMO.data.chanlocs(elec).urchan; % Find original elec index
for cond = 1:Nconds(1) % For each cond going into Y1
Y1(org_elec,:,:,sub-1+cond) = Y(elec,:,:,conds1(cond));
end
for cond = 1:Nconds(2) % For each cond going into Y2
Y2(org_elec,:,:,sub-1+cond) = Y(elec,:,:,conds2(cond));
end
% Leave the rest as nan
end
end
size(Y1)
size(Y2)
Y1nans = mean(isnan(Y1(:)))
Y2nans = mean(isnan(Y2(:)))
% --- Check values
if model.defaults.bootstrap == 1
nboot = 1000;
else
nboot = 0;
end
tfce = model.defaults.tfce;
if tfce == 1 && isfield(LIMO.data,'neighbouring_matrix') == 0 % Check we have neighb matrix. If not, create it.
EEGLIMO.chanlocs = model.defaults.chanlocs;
neighbdis = inputdlg('What neighbourhood distance should be used for TFCE neighbourhood matrix? (Perhaps 0.37 for 128 electrode systems)','Enter neighb distance',1,{'0.37'});
neighbdis = str2num(neighbdis{1});
[tmpneighbs, LIMO.data.neighbouring_matrix] = limo_get_channeighbstructmat(EEGLIMO,neighbdis);
end
Analysis_type = 'ITC';
parameters = 1;
% Run stats on this Ybig
cd(original_LIMO_dir);
tag = sprintf('%s_conds%s_%s',model.test_select{2},cond_tested{1},cond_tested{2});
tag(~ismember(tag,['A':'Z' 'a':'z' '1':'9' '_']))= ''; % Clean up tag string
mkdir(tag);cd(tag)
LIMO.data.cond_tested = cond_tested;
LIMO.data.chanlocs = model.defaults.chanlocs;
save LIMO LIMO
limo_random_robust(model.test_select{1},Y1,Y2,parameters,nboot,tfce);
disp([model.test_select{2} ' done'])
% Plot
plotnow = 0;
if plotnow == 1
if nboot == 0
load two_samples_ttest_parameter_1
limo_display_results_tf(LIMO, two_samples(:,:,:,4),1,['ITC F ', model.test_select{2}])
else
load /H0/H0_two_samples_ttest_parameter_1
limo_display_results_tf(LIMO, H0_two_samples(:,:,:,4),1,['ITC F ', model.test_select{2}])
end
end
elseif model.test_select{1} == 3 % Paired t
disp(model.test_select{2})
disp('Not yet implemented')
elseif model.test_select{1} == 4 % Reg
cont_data = model.cont_files;
disp(model.test_select{2})
conds1 = 1;
conds2 = 2;
if model.Ncond{1} > 1
cond_text{1} = sprintf('There are %d conditions. Which should be tested here? \n\nChoose first condition(s):', model.Ncond{1});
%cond_text{2} = 'Second condition(s) to test:';
cond_tested = inputdlg(cond_text,'Which conditions should be tested?',1,{'1,2'});
conds1 = str2num(cond_tested{1});
end
% Build selected ITC data into correct format
Nsub = length(model.set_files);
Nconds = [length(conds1)];
total_elecs = length(model.defaults.chanlocs);
Y1 = nan(total_elecs,size(Y,2),size(Y,3),Nsub*Nconds(1));
%Y2 = nan(total_elecs,size(Y,2),size(Y,3),Nsub*Nconds(2));
% Check cont length
if length(cont_data) ~= size(Y1,4)
error('Continuous data is of different length to subjects*Conditions analysed')
end
% Populate Y1 and Y2 with ITC data already saved
for sub = 1:Nsub
cd(model.itc_data{sub})
load LIMO
load Y
for elec = 1:size(Y,1)
org_elec = LIMO.data.chanlocs(elec).urchan; % Find original elec index
for cond = 1:Nconds(1) % For each cond going into Y1
Y1(org_elec,:,:,sub-1+cond) = Y(elec,:,:,conds1(cond));
end
% Leave the rest as nan
end
end
size(Y1)
Y1nans = mean(isnan(Y1(:)))
% --- Check values
if model.defaults.bootstrap == 1
nboot = 1000;
else
nboot = 0;
end
tfce = model.defaults.tfce;
if tfce == 1 && isfield(LIMO.data,'neighbouring_matrix') == 0 % Check we have neighb matrix. If not, create it.
EEGLIMO.chanlocs = model.defaults.chanlocs;
neighbdis = inputdlg('What neighbourhood distance should be used for TFCE neighbourhood matrix? (Perhaps 0.37 for 128 electrode systems)','Enter neighb distance',1,{'0.37'});
neighbdis = str2num(neighbdis{1});
[tmpneighbs, LIMO.data.neighbouring_matrix] = limo_get_channeighbstructmat(EEGLIMO,neighbdis);
end
Analysis_type = 'ITC';
parameters = 1;
% Run stats on this Ybig
cd(original_LIMO_dir);
tag = sprintf('%s_conds%s',model.test_select{2},cond_tested{1});
tag(~ismember(tag,['A':'Z' 'a':'z' '1':'9' '_']))= ''; % Clean up tag string
mkdir(tag);cd(tag)
LIMO.data.cond_tested = cond_tested;
LIMO.data.chanlocs = model.defaults.chanlocs;
save LIMO LIMO
limo_random_robust(model.test_select{1},Y1,cont_data,parameters,nboot,tfce);
disp([model.test_select{2} ' done'])
% Plot
plotnow = 1;
if plotnow == 1
load R2
limo_display_results_tf(LIMO, R2(:,:,:,3),1,['ITC R2 ', model.test_select{2}])
end
elseif model.test_select{1} == 5 % ANOVA
disp(model.test_select{2})
disp('Not yet implemented')
elseif model.test_select{1} == 6 % Central tendancy?
disp(model.test_select{2})
disp('Not yet implemented')
end