forked from LIMO-EEG-Toolbox/limo_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
limo_eeg_tf.m
788 lines (724 loc) · 41.1 KB
/
limo_eeg_tf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
function limo_eeg_tf(varargin)
% Forked from limo_eeg to run time-frequncy analyses
% This mostly runs parallel to limo_eeg{3} and +, but adapted for 4D tf
% data - the LIMO.mat is created and updated via limo_eeg.m - if data are
% 4D then limo_eeg_tf is called.
%
% IMPUT limo_eeg_tf(4) to run the GLM with/without bootstrap and tfce
% limo_eeg_tf(5) make figures
% limo_eeg(6) contrasts
%
% Andrew X Stewart, Nov 2013
% Cyril Pernet February 2014
% ---------------------------
% Copyright (C) LIMO Team 2014
global LIMO
if ~isnumeric(cell2mat(varargin))
error('case number expected - see help')
end
switch varargin{1}
% case{1} - see limo_eeg = GUI
% case{2} - see limo_eeg = IMPORT
% case{3} - see limo_eeg = DESIGN MATRIX
case{4}
% NBOOT (updated if specified in LIMO.design)
% ------------------------------------------
nboot = 1000;
% ----------
% get the LIMO.mat
try
load('LIMO.mat');
catch
[file,dir_path,ind] = uigetfile('LIMO.mat','select a LIMO.mat file');
if ind ==0
return
else
cd (dir_path); load LIMO.mat;
end
end
cd(LIMO.dir);
% ---------------- univariate analysis ------------------
% --------------------------------------------------------
if strcmp(LIMO.design.type_of_analysis,'Mass-univariate')
% --------- load files created by limo_design_matrix ------------------
load Yr; % load a 4D Yr with tf data,
if sum(size(Yr) ~= LIMO.data.size4D)~=0; % then check it is so
errordlg('Is 4D data given to limo_design_matrix_tf?','LIMO.data.size4D'); return
end
Yr = limo_tf_4d_reshape(Yr); % reshape to 3D
if sum(size(Yr) ~= LIMO.data.size3D)~=0; % confirm now shaped 3D
errordlg('4D data are not reshaped correctly!','LIMO.data.size3D'); return
end
Yhat = zeros(LIMO.data.size3D);
Res = zeros(LIMO.data.size3D);
Betas = zeros(LIMO.data.size3D(1),LIMO.data.size3D(2),size(LIMO.design.X,2));
R2 = zeros(LIMO.data.size3D(1),LIMO.data.size3D(2),3);
% ------------- prepare weight matrix -------------------------------------
if strcmp(LIMO.design.method,'WLS') || strcmp(LIMO.design.method,'OLS')
W = ones(LIMO.data.size3D(1),LIMO.data.size4D(2),LIMO.data.size3D(3));
elseif strcmp(LIMO.design.method,'IRLS')
W = zeros(size(Yr));
end
% ------------ prepare condition/covariates -------------------
if LIMO.design.nb_conditions ~=0
tmp_Condition_effect = NaN(size(Yr,1),size(Yr,2),length(LIMO.design.nb_conditions),2);
end
if LIMO.design.nb_interactions ~=0
tmp_Interaction_effect = NaN(size(Yr,1),size(Yr,2),length(LIMO.design.nb_interactions),2);
end
if LIMO.design.nb_continuous ~=0
tmp_Covariate_effect = NaN(size(Yr,1),size(Yr,2),LIMO.design.nb_continuous,2);
end
% -------------- loop the analysis electrode per electrode
if size(Yr,1) == 1
array = 1;
else
array = find(~isnan(Yr(:,1,1))); % skip empty electrodes
end
if strcmp(LIMO.design.status,'to do')
update = 1;
X = LIMO.design.X;
for e = 1:size(array,1)
electrode = array(e); warning off;
fprintf('analyzing channel %g/%g \n',electrode,size(Yr,1));
if LIMO.Level == 2
Y = squeeze(Yr(electrode,:,:));
index = find(~isnan(Y(1,:)));
Y = Y(:,index);
LIMO.design.X = X(index,:);
if size(LIMO.design.X,1) <= size(LIMO.design.X,2)
fprintf('skipping channel %g not enough data \n',electrode);
else
model = limo_glm1(Y',LIMO); warning on;
end
if isempty(index)
index = [1:size(Y,2)];
end
else % level 1 we should not have any NaNs
index = [1:size(Yr,3)];
model = limo_glm1(squeeze(Yr(electrode,:,:))',LIMO);
end
% update the LIMO.mat (do it only once)
if update == 1
LIMO.model.model_df = model.df;
if LIMO.design.nb_conditions ~=0
LIMO.model.conditions_df = model.conditions.df;
end
if LIMO.design.nb_interactions ~=0
LIMO.model.interactions_df = model.interactions.df;
end
if LIMO.design.nb_continuous ~=0
LIMO.model.continuous_df = model.continuous.df;
end
update = 0;
end
% update the files to be stored on the disk
if strcmp(LIMO.design.method,'IRLS')
W(electrode,:,:,index) = model.W';
else
W(electrode,:,index) = model.W';
end
fitted_data = LIMO.design.X*model.betas;
Yhat(electrode,:,index) = fitted_data';
Res(electrode,:,index) = squeeze(Yr(electrode,:,index)) - fitted_data'; clear fitted_data
R2(electrode,:,1) = model.R2_univariate;
R2(electrode,:,2) = model.F;
R2(electrode,:,3) = model.p;
Betas(electrode,:,:,1) = model.betas';
if prod(LIMO.design.nb_conditions) ~=0
if length(LIMO.design.nb_conditions) == 1
tmp_Condition_effect(electrode,:,1,1) = model.conditions.F;
tmp_Condition_effect(electrode,:,1,2) = model.conditions.p;
else
for i=1:length(LIMO.design.nb_conditions)
tmp_Condition_effect(electrode,:,i,1) = model.conditions.F(i,:);
tmp_Condition_effect(electrode,:,i,2) = model.conditions.p(i,:);
end
end
end
if LIMO.design.fullfactorial == 1
if length(LIMO.design.nb_interactions) == 1
tmp_Interaction_effect(electrode,:,1,1) = model.interactions.F;
tmp_Interaction_effect(electrode,:,1,2) = model.interactions.p;
else
for i=1:length(LIMO.design.nb_interactions)
tmp_Interaction_effect(electrode,:,i,1) = model.interactions.F(i,:);
tmp_Interaction_effect(electrode,:,i,2) = model.interactions.p(i,:);
end
end
end
if LIMO.design.nb_continuous ~=0
if LIMO.design.nb_continuous == 1
tmp_Covariate_effect(electrode,:,1,1) = model.continuous.F;
tmp_Covariate_effect(electrode,:,1,2) = model.continuous.p;
else
for i=1:LIMO.design.nb_continuous
tmp_Covariate_effect(electrode,:,i,1) = model.continuous.F(:,i);
tmp_Covariate_effect(electrode,:,i,2) = model.continuous.p(:,i);
end
end
end
end
% save data on the disk and clean out
LIMO.design.X = X;
LIMO.design.weights = W;
LIMO.design.status = 'done';
% Save all tf data as 4D elec x freqs x times x trials
disp('saving results to drive ..'); save LIMO LIMO;
Yhat = limo_tf_4d_reshape(Yhat); save Yhat Yhat -v7.3;
Res = limo_tf_4d_reshape(Res); save Res Res -v7.3;
Betas = limo_tf_4d_reshape(Betas); save Betas Betas -v7.3;
R2 = limo_tf_4d_reshape(R2); save R2 R2 -v7.3;
clear Yhat Res Betas R2
if prod(LIMO.design.nb_conditions) ~=0
for i=1:length(LIMO.design.nb_conditions)
name = sprintf('Condition_effect_%g',i);
if size(tmp_Condition_effect,1) == 1
tmp = squeeze(tmp_Condition_effect(1,:,i,:));
Condition_effect = NaN(1,size(tmp_Condition_effect,2),2);
Condition_effect(1,:,:) = tmp;
else
Condition_effect = squeeze(tmp_Condition_effect(:,:,i,:));
end
Condition_effect = limo_tf_4d_reshape(Condition_effect);
save(name,'Condition_effect','-v7.3')
end
clear Condition_effect tmp_Condition_effect
end
if LIMO.design.fullfactorial == 1
for i=1:length(LIMO.design.nb_interactions)
name = sprintf('Interaction_effect_%g',i);
if size(tmp_Interaction_effect,1) == 1
tmp = squeeze(tmp_Interaction_effect(1,:,i,:));
Interaction_effect = NaN(1,size(tmp_Interaction_effect,2),2);
Interaction_effect(1,:,:) = tmp;
else
Interaction_effect = squeeze(tmp_Interaction_effect(:,:,i,:));
end
Interaction_effect = limo_tf_4d_reshape(Interaction_effect);
save(name,'Interaction_effect','-v7.3')
end
clear Interaction_effect tmp_Interaction_effect
end
if LIMO.design.nb_continuous ~=0
for i=1:LIMO.design.nb_continuous
name = sprintf('Covariate_effect_%g',i);
if size(tmp_Covariate_effect,1) == 1
tmp = squeeze(tmp_Covariate_effect(1,:,i,:));
Covariate_effect = NaN(1,size(tmp_Covariate_effect,2),2);
Covariate_effect(1,:,:) = tmp;
else
Covariate_effect = squeeze(tmp_Covariate_effect(:,:,i,:));
end
Covariate_effect = limo_tf_4d_reshape(Covariate_effect);
save(name,'Covariate_effect','-v7.3')
end
clear Covariate_effect tmp_Covariate_effect
end
clear file electrode filename model reg dir i W
end
% as above for bootstrap under H0
% -------------------------------
boot_go = 0;
if LIMO.design.bootstrap ~=0
if exist('H0','dir')
if strcmp(questdlg('H0 directory detected, overwrite?','data check','Yes','No','No'),'No');
if LIMO.design.tfce == 1
errordlg2('bootstrap skipped - attempting to continue with tfce');
else
return
end
else
boot_go = 1;
end
else
boot_go = 1;
end
else
clear Yr
end
if boot_go == 1
try
fprintf('\n %%%%%%%%%%%%%%%%%%%%%%%% \n Bootstrapping data with the GLM can take a while, be patient .. \n %%%%%%%%%%%%%%%%%%%%%%%% \n')
mkdir H0;
if LIMO.design.bootstrap > 599 || ~exist(nboot,'var')
nboot = LIMO.design.bootstrap;
end
if LIMO.Level == 2
boot_table = limo_create_boot_table(Yr,nboot);
else
boot_table = randi(size(Yr,3),size(Yr,3),nboot);
end
H0_Betas = NaN(size(Yr,1), size(Yr,2), size(LIMO.design.X,2), nboot);
H0_R2 = NaN(size(Yr,1), size(Yr,2), 3, nboot); % stores R, F and p values for each boot
if LIMO.design.nb_conditions ~= 0
tmp_H0_Conditions = NaN(size(Yr,1), size(Yr,2), length(LIMO.design.nb_continuous), 2, nboot);
end
if LIMO.design.nb_interactions ~=0
tmp_H0_Interaction_effect = NaN(size(Yr,1),size(Yr,2),length(LIMO.design.nb_interactions), 2, nboot);
end
if LIMO.design.nb_continuous ~= 0
tmp_H0_Covariates = NaN(size(Yr,1), size(Yr,2), LIMO.design.nb_continuous, 2, nboot);
end
warning off;
X = LIMO.design.X;
h = waitbar(0,'bootstraping data','name','% done');
for e = 1:size(array,1)
electrode = array(e);
waitbar(e/size(array,1))
fprintf('bootstrapping electrode %g \n',electrode);
if LIMO.Level == 2
Y = squeeze(Yr(electrode,:,:));
index = find(~isnan(Y(1,:)));
[rows,cols] = size(X(index,:));
if (rows >= cols)
model = limo_glm1_boot(Y(:,index)',X(index,:),LIMO.design.nb_conditions,LIMO.design.nb_interactions,LIMO.design.nb_continuous,LIMO.design.zscore,LIMO.design.method,boot_table{electrode});
end
else
model = limo_glm1_boot(squeeze(Yr(electrode,:,:))',LIMO,boot_table);
end
% update the files to be stored on the disk
H0_Betas(electrode,:,:,:) = model.Betas;
for B = 1:nboot % now loop because we use cells
H0_R2(electrode,:,1,B) = model.R2{B};
H0_R2(electrode,:,2,B) = model.F{B};
H0_R2(electrode,:,3,B) = model.p{B};
if prod(LIMO.design.nb_conditions) ~=0
if length(LIMO.design.nb_conditions) == 1
tmp_H0_Conditions(electrode,:,1,1,B) = model.conditions.F{B};
tmp_H0_Conditions(electrode,:,1,2,B) = model.conditions.p{B};
else
for i=1:length(LIMO.design.nb_conditions)
tmp_H0_Conditions(electrode,:,i,1,B) = model.conditions.F{B}(i,:);
tmp_H0_Conditions(electrode,:,i,2,B) = model.conditions.p{B}(i,:);
end
end
end
if LIMO.design.fullfactorial == 1
if length(LIMO.design.nb_interactions) == 1
tmp_H0_Interaction_effect(electrode,:,1,1,:) = model.interactions.F{B};
tmp_H0_Interaction_effect(electrode,:,1,2,:) = model.interactions.p{B};
else
for i=1:length(LIMO.design.nb_interactions)
tmp_H0_Interaction_effect(electrode,:,i,1,:) = model.interactions.F{B}(i,:);
tmp_H0_Interaction_effect(electrode,:,i,2,:) = model.interactions.p{B}(i,:);
end
end
end
if LIMO.design.nb_continuous ~=0
if LIMO.design.nb_continuous == 1
tmp_H0_Covariates(electrode,:,1,1,B) = model.continuous.F{B};
tmp_H0_Covariates(electrode,:,1,2,B) = model.continuous.p{B};
else
for i=1:LIMO.design.nb_continuous
tmp_H0_Covariates(electrode,:,i,1,B) = model.continuous.F{B}(:,i);
tmp_H0_Covariates(electrode,:,i,2,B) = model.continuous.p{B}(:,i);
end
end
end
end
end
close(h); warning on;
clear electrode model;
% save data on the disk and clear out
disp('saving H0 data to disk ... ');
save(['H0' filesep 'boot_table'],'boot_table')
H0_Betas = limo_tf_5d_reshape(H0_Betas);
save(['H0' filesep 'H0_Betas'],'H0_Betas','-v7.3')
clear H0_Betas
H0_R2 = limo_tf_5d_reshape(H0_R2);
save(['H0' filesep 'H0_R2'], 'H0_R2', '-v7.3');
clear H0_R2
if prod(LIMO.design.nb_conditions) ~=0
for i=1:length(LIMO.design.nb_conditions)
name = sprintf('H0_Condition_effect_%g',i);
H0_Condition_effect = squeeze(tmp_H0_Conditions(:,:,i,:,:));
H0_Condition_effect = limo_tf_5d_reshape(H0_Condition_effect);
save(['H0' filesep name],'H0_Condition_effect','-v7.3');
clear H0_Condition_effect
end
clear tmp_H0_Conditions
end
if LIMO.design.fullfactorial == 1
for i=1:length(LIMO.design.nb_interactions)
name = sprintf('H0_Interaction_effect_%g',i);
H0_Interaction_effect = squeeze(tmp_H0_Interaction_effect(:,:,i,:,:));
H0_Interaction_effect = limo_tf_5d_reshape(H0_Interaction_effect);
save(['H0' filesep name],'H0_Interaction_effect','-v7.3');
clear H0_Interaction_effect
end
clear tmp_H0_Interaction_effect
end
if LIMO.design.nb_continuous ~=0
for i=1:LIMO.design.nb_continuous
name = sprintf('H0_Covariate_effect_%g',i);
H0_Covariate_effect = squeeze(tmp_H0_Covariates(:,:,i,:,:));
H0_Covariate_effect = limo_tf_5d_reshape(H0_Covariate_effect);
save(['H0' filesep name],'H0_Covariate_effect','-v7.3');
clear H0_Covariate_effect
end
clear tmp_H0_Covariates
end
disp(' ');
catch boot_error
disp('an error occured while attempting to bootstrap or save the data')
fprintf('%s \n',boot_error.message); return
end
cd LIMO.dir
end
% TFCE if requested
% --------------
if LIMO.design.tfce == 1
if isfield(LIMO.data,'neighbouring_matrix') && LIMO.design.bootstrap ~=0
if exist('TFCE','dir')
if strcmp(questdlg('TFCE directory detected, overwrite?','data check','Yes','No','No'),'No');
return
end
end
fprintf('\n %%%%%%%%%%%%%%%%%%%%%%%% \n Computing TFCE for GLM takes a while, be patient .. \n %%%%%%%%%%%%%%%%%%%%%%%% \n')
mkdir TFCE;
% R2
load R2.mat; fprintf('Creating R2 TFCE scores \n');
if size(R2,1) == 1
tfce_score(1,:,:) = limo_tfce(2, squeeze(R2(:,:,:,2)),[]);
else
tfce_score = limo_tfce(3, squeeze(R2(:,:,:,2)),LIMO.data.neighbouring_matrix);
end
save(['H0' filesep 'tfce_R2'],'tfce_score'); clear R2;
cd('H0'); fprintf('Thresholding H0_R2 using TFCE \n'); load H0_R2;
if size(H0_R2,1) == 1
if exist('parfor','file')
tfce_H0_score = NaN(1,size(H0_R2,2),size(H0_R2,3),LIMO.design.bootstrap);
parfor b=1:nboot
tfce_H0_score(1,:,:,b) = limo_tfce(2,squeeze(H0_R2(:,:,:,2,b)),LIMO.data.neighbouring_matrix,0);
end
else
tfce_H0_score(1,:,:,:) = limo_tfce(2, squeeze(H0_R2(:,:,:,2,:)),[]);
end
else
if exist('parfor','file')
tfce_H0_score = NaN(size(H0_R2,1),size(H0_R2,2),size(H0_R2,3),LIMO.design.bootstrap);
parfor b=1:nboot
tfce_H0_score(:,:,:,b) = limo_tfce(3,squeeze(H0_R2(:,:,:,2,b)),LIMO.data.neighbouring_matrix,0);
end
else
tfce_H0_score = limo_tfce(3, squeeze(H0_R2(:,:,:,2,:)),LIMO.data.neighbouring_matrix);
end
end
save('tfce_H0_R2','tfce_H0_score'); clear H0_R2; cd ..;
% conditions
if prod(LIMO.design.nb_conditions) ~=0
for i=1:length(LIMO.design.nb_conditions)
name = sprintf('Condition_effect_%g.mat',i); load(name);
cd('TFCE'); fprintf('Creating Condition %g TFCE scores \n',i)
if size(Condition_effect,1) == 1
tfce_score(1,:,:) = limo_tfce(2, squeeze(Condition_effect(:,:,:,1)),[]);
else
tfce_score = limo_tfce(3, squeeze(Condition_effect(:,:,:,1)),LIMO.data.neighbouring_matrix);
end
full_name = sprintf('tfce_%s',name); save(full_name,'tfce_score');
clear Condition_effect tfce_score; cd ..
end
cd('H0'); fprintf('Creating H0 Condition(s) TFCE scores \n');
for i=1:length(LIMO.design.nb_conditions)
name = sprintf('H0_Condition_effect_%g.mat',i); load(name);
if size(H0_Condition_effect,1) == 1
if exist('parfor','file')
tfce_H0_score = NaN(1,size(H0_Condition_effect,2),size(H0_Condition_effect,3),LIMO.design.bootstrap);
parfor b=1:nboot
tfce_H0_score(:,:,:,b) = limo_tfce(2,squeeze(H0_Condition_effect(:,:,:,1,b)),LIMO.data.neighbouring_matrix,0);
end
else
tfce_H0_score(2,:,:,:) = limo_tfce(2,squeeze(H0_Condition_effect(:,:,:,1,:)),[]);
end
else
if exist('parfor','file')
tfce_H0_score = NaN(size(H0_Condition_effect,1),size(H0_Condition_effect,2),size(H0_Condition_effect,3),LIMO.design.bootstrap);
parfor b=1:nboot
tfce_H0_score(:,:,:,b) = limo_tfce(3,squeeze(H0_Condition_effect(:,:,:,1,b)),LIMO.data.neighbouring_matrix,0);
end
else
tfce_H0_score = limo_tfce(3,squeeze(H0_Condition_effect(:,:,:,1,:)),LIMO.data.neighbouring_matrix);
end
end
full_name = sprintf('tfce_%s',name); save(full_name,'tfce_H0_score');
clear H0_Condition_effect tfce_H0_score;
end
cd ..
end
% interactions
if LIMO.design.fullfactorial == 1
for i=1:length(LIMO.design.fullfactorial)
name = sprintf('Interaction_effect_%g.mat',i); load(name);
cd('TFCE'); fprintf('Creating Interaction %g TFCE scores \n',i)
if size(Interaction_effect,1) == 1
tfce_score(1,:) = limo_tfce(2,squeeze(Interaction_effect(:,:,:,1)),[]);
else
tfce_score = limo_tfce(3,squeeze(Interaction_effect(:,:,:,1)),LIMO.data.neighbouring_matrix);
end
full_name = sprintf('tfce_%s',name); save(full_name,'tfce_score');
clear Interaction_effect tfce_score; cd ..
end
cd('H0'); fprintf('Creating H0 Interaction(s) TFCE scores \n');
for i=1:length(LIMO.design.fullfactorial)
name = sprintf('H0_Interaction_effect_%g.mat',i); load(name);
if size(H0_Interaction_effect,1) == 1
if exist('parfor','file')
tfce_H0_score = NaN(1,size(H0_Interaction_effect,2),size(H0_Interaction_effect,3),LIMO.design.bootstrap);
parfor b=1:nboot
tfce_H0_score(:,:,:,b) = limo_tfce(2,squeeze(H0_Interaction_effect(:,:,:,1,b)),LIMO.data.neighbouring_matrix,0);
end
else
tfce_H0_score(1,:,:) = limo_tfce(2,squeeze(H0_Interaction_effect(:,:,:,1,:)),[]);
end
else
if exist('parfor','file')
tfce_H0_score = NaN(size(H0_Interaction_effect,1),size(H0_Interaction_effect,2),size(H0_Interaction_effect,3),LIMO.design.bootstrap);
parfor b=1:nboot
tfce_H0_score(:,:,:,b) = limo_tfce(3,squeeze(H0_Interaction_effect(:,:,:,1,b)),LIMO.data.neighbouring_matrix,0);
end
else
tfce_H0_score = limo_tfce(3,squeeze(H0_Interaction_effect(:,:,:,1,:)),LIMO.data.neighbouring_matrix);
end
end
full_name = sprintf('tfce_%s',name); save(full_name,'tfce_H0_score');
clear H0_Interaction_effect tfce_H0_score;
end
cd ..
end
% covariates / continuous regressors
if LIMO.design.nb_continuous ~=0
for i=1:LIMO.design.nb_continuous
name = sprintf('Covariate_effect_%g.mat',i); load(name);
cd('TFCE'); fprintf('Creating Covariate %g TFCE scores \n',i);
if size(Covariate_effect,1) == 1
tfce_score(1,:,:) = limo_tfce(2,squeeze(Covariate_effect(:,:,:,1)),[]);
else
tfce_score = limo_tfce(3,squeeze(Covariate_effect(:,:,:,1)),LIMO.data.neighbouring_matrix);
end
full_name = sprintf('tfce_%s',name); save(full_name,'tfce_score');
clear Covariate_effect tfce_score; cd ..
end
cd('H0'); fprintf('Creating H0 Covariate(s) TFCE scores \n');
for i=1:LIMO.design.nb_continuous
name = sprintf('H0_Covariate_effect_%g.mat',i); load(name);
if size(H0_Covariate_effect,1) ==1
if exist('parfor','file')
tfce_H0_score = NaN(1,size(H0_Covariate_effect,2),size(H0_Covariate_effect,3),LIMO.design.bootstrap);
parfor b=1:nboot
tfce_H0_score(:,:,:,b) = limo_tfce(2,squeeze(H0_Covariate_effect(:,:,:,1,b)),LIMO.data.neighbouring_matrix,0);
end
else
tfce_H0_score(1,:,:,:) = limo_tfce(2,squeeze(H0_Covariate_effect(:,:,:,1,:)),[]);
end
else
if exist('parfor','file')
tfce_H0_score = NaN(size(H0_Covariate_effect,1),size(H0_Covariate_effect,2),size(H0_Covariate_effect,3),LIMO.design.bootstrap);
parfor b=1:nboot
tfce_H0_score(:,:,:,b) = limo_tfce(3,squeeze(H0_Covariate_effect(:,:,:,1,b)),LIMO.data.neighbouring_matrix,0);
end
else
tfce_H0_score = limo_tfce(3,squeeze(H0_Covariate_effect(:,:,:,1,:)),LIMO.data.neighbouring_matrix);
end
end
full_name = sprintf('tfce_%s',name); save(full_name,'tfce_H0_score');
clear H0_Covariate_effect tfce_H0_score
end
cd ..
end
elseif ~isfield(LIMO.data,'neighbouring_matrix')
disp('No TFCE performed, neighbourhood matrix missing')
elseif LIMO.design.bootstrap ==0
disp('No TFCE performed, since there was no bootstraps computed')
end
end
% ---------------- multivariate analysis ------------------
% --------------------------------------------------------
elseif strcmp(LIMO.design.type_of_analysis,'Multivariate')
disp('multivariate in time*freq space not supported')
% update = 1;
%
% % --------- load files created by limo_design_matrix ------------------
% load Yr; load Yhat; load Res; load Betas;
%
% % ------------- prepare weight matrice -------------------------------------
% if strcmp(LIMO.design.method,'WLS') || strcmp(LIMO.design.method,'OLS')
% W = ones(size(Yr,1),size(Yr,3));
% elseif strcmp(LIMO.design.method,'IRLS')
% W = ones(size(Yr));
% end
%
% % -------------- loop the analysis time frames per time frames
%
% if strcmp(LIMO.design.status,'to do')
%
% % 1st get weights based on time
% if strcmp(LIMO.design.method,'WLS')
% fprintf('getting trial weights \n')
% array = find(~isnan(Yr(:,1,1))); % skip empty electrodes
% for e = 1:size(Yr,1)
% electrode = array(e); [Betas,W(e,:)] = limo_WLS(LIMO.design.X,squeeze(Yr(electrode,:,:))');
% end
% LIMO.design.weights = W;
% end
%
% % 2nd run the multivative analysis
% for t = 1:size(Yr,2)
% fprintf('analyzing time frame %g/%g \n',t,size(Yr,2));
% model = limo_glmm1(squeeze(Yr(:,t,:))',LIMO); warning off;
%
% % update the LIMO.mat
% if update == 1
% if LIMO.design.nb_conditions ~=0
% LIMO.model.conditions_df = [model.conditions.Roy.df' model.conditions.Roy.dfe' model.conditions.Pillai.df' model.conditions.Pillai.dfe'];
% end
% if LIMO.design.nb_interactions ~=0
% LIMO.model.interactions_df = [model.interactions.Roy.df' model.interactions.Roy.dfe' model.interactions.Pillai.df' model.interactions.Pillai.dfe' ];
% end
% if LIMO.design.nb_continuous ~=0
% LIMO.model.continuous_df = [model.continuous.Roy.df model.continuous.Roy.dfe];
% end
% update = 0;
% end
%
% % update the files to be stored on the disk
% fitted_data = LIMO.design.X*model.betas;
% Yhat(:,t,:) = fitted_data';
% Res(:,t,:) = squeeze(Yr(:,t,:)) - fitted_data'; clear fitted_data
% R2{t} = model.R2;
% Betas(:,t,:) = model.betas';
%
% if prod(LIMO.design.nb_conditions) ~=0
% if length(LIMO.design.nb_conditions) == 1
% tmp_Condition_effect{t} = model.conditions;
% else
% for i=1:length(LIMO.design.nb_conditions)
% tmp_Condition_effect{t}(i).EV = model.conditions.EV(i,:);
% tmp_Condition_effect{t}(i).Roy.F = model.conditions.Roy.F(i);
% tmp_Condition_effect{t}(i).Roy.p = model.conditions.Roy.p(i);
% tmp_Condition_effect{t}(i).Pillai.F = model.conditions.Pillai.F(i);
% tmp_Condition_effect{t}(i).Pillai.p = model.conditions.Pillai.p(i);
% end
% end
% end
%
% if LIMO.design.fullfactorial == 1
% if length(LIMO.design.nb_interactions) == 1
% tmp_Interaction_effect{t} = model.interactions;
% else
% for i=1:length(LIMO.design.nb_interactions)
% tmp_Interaction_effect{t}(i).EV = model.conditions.EV(i,:);
% tmp_Interaction_effect{t}(i).Roy.F = model.conditions.Roy.F(i);
% tmp_Interaction_effect{t}(i).Roy.p = model.conditions.Roy.p(i);
% tmp_Interaction_effect{t}(i).Pillai.F = model.conditions.Pillai.F(i);
% tmp_Interaction_effect{t}(i).Pillai.p = model.conditions.Pillai.p(i);
% end
% end
% end
%
% if LIMO.design.nb_continuous ~=0
% if LIMO.design.nb_continuous == 1
% tmp_Covariate_effect{t} = model.continuous;
% else
% for i=1:LIMO.design.nb_continuous
% tmp_Covariate_effect{t}(i).EV = model.conditions.EV(i,:);
% tmp_Covariate_effect{t}(i).Roy.F = model.conditions.Roy.F(i);
% tmp_Covariate_effect{t}(i).Roy.p = model.conditions.Roy.p(i);
% tmp_Covariate_effect{t}(i).Pillai.F = model.conditions.Pillai.F(i);
% tmp_Covariate_effect{t}(i).Pillai.p = model.conditions.Pillai.p(i);
% end
% end
% end
% end
%
% % save data on the disk and clean out
% LIMO.design.weights = W;
% LIMO.design.status = 'done';
% save LIMO LIMO; save Yhat Yhat;
% save Res Res; save Betas Betas;
% clear Yhat Res Betas
%
% % R2 data
% name = sprintf('R2_EV',i); R2_EV = NaN(size(Yr,1),size(Yr,2));
% for t=1:size(Yr,2); R2_EV(:,t) = real(R2{t}.EV); end
% save(name,'R2_EV','-v7.3')
% name = sprintf('R2'); tmp = NaN(size(Yr,2),5);
% for t=1:size(Yr,2); tmp(t,:) = [R2{t}.V R2{t}.Roy.F R2{t}.Roy.p R2{t}.Pillai.F R2{t}.Pillai.p]; end
% R2 = tmp; save(name,'R2','-v7.3')
%
% % condition effects
% if prod(LIMO.design.nb_conditions) ~=0
% for i=1:length(LIMO.design.nb_conditions)
% name = sprintf('Condition_effect_%g_EV',i);
% if length(LIMO.design.nb_conditions) == 1
% for t=1:size(Yr,2); Condition_effect_EV(:,t) = real(tmp_Condition_effect{t}.EV); end
% save(name,'Condition_effect_EV','-v7.3')
% name = sprintf('Condition_effect_%g',i);
% for t=1:size(Yr,2); Condition_effect(t,:) = [tmp_Condition_effect{t}.Roy.F tmp_Condition_effect{t}.Roy.p tmp_Condition_effect{t}.Pillai.F tmp_Condition_effect{t}.Pillai.p]; end
% save(name,'Condition_effect','-v7.3')
% else
% for t=1:size(Yr,2); Condition_effect_EV(:,t) = real(tmp_Condition_effect{t}(i).EV); end
% save(name,'Condition_effect_EV','-v7.3')
% name = sprintf('Condition_effect_%g',i);
% for t=1:size(Yr,2); Condition_effect(t,:) = [tmp_Condition_effect{t}(i).Roy.F tmp_Condition_effect{t}(i).Roy.p tmp_Condition_effect{t}(i).Pillai.F tmp_Condition_effect{t}(i).Pillai.p]; end
% save(name,'Condition_effect','-v7.3')
% end
% end
% clear Condition_effect Condition_effect_EV tmp_Condition_effect
% end
%
% % interaction effects
% if LIMO.design.fullfactorial == 1
% for i=1:length(LIMO.design.nb_interactions)
% name = sprintf('Interaction_effect_%g_EV',i);
% if length(LIMO.design.nb_interactions) == 1
% for t=1:size(Yr,2); Interaction_effect_EV(:,t) = real(tmp_Interaction_effect{t}.EV); end
% save(name,'Interaction_effect_EV','-v7.3')
% name = sprintf('Interaction_effect_%g',i);
% for t=1:size(Yr,2); Interaction_effect(t,:) = [tmp_Interaction_effect{t}.Roy.F tmp_Interaction_effect{t}.Roy.p tmp_Interaction_effect{t}.Pillai.F tmp_Interaction_effect{t}.Pillai.p]; end
% save(name,'Interaction_effect','-v7.3')
% else
% for t=1:size(Yr,2); Interaction_effect_EV(:,t) = real(tmp_Interaction_effect{t}(i).EV); end
% save(name,'Interaction_effect_EV','-v7.3')
% name = sprintf('Interaction_effect_%g',i);
% for t=1:size(Yr,2); Interaction_effect(t,:) = [tmp_Interaction_effect{t}(i).Roy.F tmp_Interaction_effect{t}(i).Roy.p tmp_Interaction_effect{t}(i).Pillai.F tmp_Interaction_effect{t}(i).Pillai.p]; end
% save(name,'Interaction_effectV','-v7.3')
% end
% end
% clear Interaction_effect Interaction_effect_EV tmp_Interaction_effect
% end
%
% if LIMO.design.nb_continuous ~=0
% for i=1:LIMO.design.nb_continuous
% name = sprintf('Covariate_effect_%g_EV',i);
% if LIMO.design.nb_continuous == 1
% for t=1:size(Yr,2); Covariate_effect_EV(:,t) = real(tmp_Covariate_effect{t}.EV); end
% save(name,'Covariate_effect_EV','-v7.3')
% name = sprintf('Covariate_effect_%g',i);
% for t=1:size(Yr,2); Covariate_effect(t,:) = [tmp_Covariate_effect{t}.Roy.F tmp_Covariate_effect{t}.Roy.p tmp_Covariate_effect{t}.Pillai.F tmp_Covariate_effect{t}.Pillai.p]; end
% save(name,'Covariate_effect','-v7.3')
% else
% for t=1:size(Yr,2); Covariate_effect_EV(:,t) = real(tmp_Covariate_effect{t}(i).EV); end
% save(name,'Covariate_effect_EV','-v7.3')
% name = sprintf('Covariate_effect_%g',i);
% for t=1:size(Yr,2); Covariate_effect(t,:) = [tmp_Covariate_effect{t}(i).Roy.F tmp_Covariate_effect{t}(i).Roy.p tmp_Covariate_effect{t}(i).Pillai.F tmp_Covariate_effect{t}(i).Pillai.p]; end
% save(name,'Covariate_effect','-v7.3')
% end
% end
% clear Covariate_effect Covariate_effect_EV tmp_Covariate_effect
% end
% clear file electrode filename model reg dir i W
% end
%
%
% % if bootsrrap
% if LIMO.design.bootstrap == 1
%
% end
%
% % TFCE if requested
% if LIMO.design.tfce == 1
% end
end
warning on;
end