forked from LIMO-EEG-Toolbox/limo_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
limo_combine_components.m
64 lines (56 loc) · 1.97 KB
/
limo_combine_components.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
function combined_ica = limo_combine_components(varargin)
% compute a weighted average of components
%
% FORMAT combined_ica = limo_combine_components(data,weights,invweights,whichic)
%
% INPUT data a 3D matrix representing set of components
% dim compoments*time frames*epochs
% weights are the columns EEG.weights
% invweights are the columns EEG.icawinv
% whichic are the com ponents to 'combine'
% method 'sum' 'max' 'maxvar' (default)
%
% OUTPUT combined_ica is the weighted average of comnponents
%
% Cyril Pernet & Ramon Martinez-Cancino 23-10-2014 updates for components (ICA)
%% ----------------------------------
% Copyright (C) LIMO Team 2010
%% check data orientation
data = varargin{1};
weights = varargin{2};
invweights = varargin{3};
whichic = varargin{4};
if nargin == 4
method = 'maxvar';
elseif nargin == 5
method = varargin{5};
end
clear varargin
nb_comp = size(data,1);
[n,p]=size(weights);
%% down to business
switch method
%------
case {'sum'}
% average power of ica weights on eletrodes
W = sqrt(sum((invweights(:,whichic)).^2,1));
combined_ica = mean(data(whichic,:,:).*repmat(W',[1,size(data,2),size(data,3)]),1);
case ('max')
% take ica which has max variance
icaact = weights*mean(data,3);
varica = var(icaact(whichic,:), [], 2);
[tmp ind] = max(varica);
combined_ica = data(ind,:,:);
case ('maxvar')
% takes the ica which has the max mean variance accounted for
icaact = weights*mean(data,3);
for iComp = 1:length(whichic)
comp = whichic(iComp);
dataMinusIca = mean(data,3) - invweights(:,comp)*icaact(comp,:);
varica(iComp) = mean(var(dataMinusIca, [], 2));
end
[tmp ind] = max(varica);
combined_ica = data(ind,:,:);
end
% figure;plot(mean(data,3)','--','LineWidth',1.5)
% hold on; plot(mean(combined_ica,3),'k','LineWidth',3); axis tight