forked from burakbayramli/books
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelec_speed_sched_data.py
24 lines (24 loc) · 1.08 KB
/
elec_speed_sched_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import numpy as np
n = 100
gamma = 0.1
g = 9.8
m = 1e3
Q_init = 10,
alpha = 0.1,
ell = np.transpose(np.matrix(
[1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447,
1.6154, 1.7919, 1.9218, 1.7382, 1.1763, 1.4057, 1.9355, 1.9169, 1.4103, 1.8936,
1.0579, 1.3529, 1.8132, 1.0099, 1.1389, 1.2028, 1.1987, 1.6038, 1.2722, 1.1988,
1.0153, 1.7468, 1.4451, 1.9318, 1.4660, 1.4186, 1.8462, 1.5252, 1.2026, 1.6721,
1.8381, 1.0196, 1.6813, 1.3795, 1.8318, 1.5028, 1.7095, 1.4289, 1.3046, 1.1897,
1.1934, 1.6822, 1.3028, 1.5417, 1.1509, 1.6979, 1.3784, 1.8600, 1.8537, 1.5936,
1.4966, 1.8998, 1.8216, 1.6449, 1.8180, 1.6602, 1.3420, 1.2897, 1.3412, 1.5341,
1.7271, 1.3093, 1.8385, 1.5681, 1.3704, 1.7027, 1.5466, 1.4449, 1.6946, 1.6213,
1.7948, 1.9568, 1.5226, 1.8801, 1.1730, 1.9797, 1.2714, 1.2523, 1.8757, 1.7373,
1.1365, 1.0118, 1.8939, 1.1991, 1.2987, 1.6614, 1.2844, 1.4692, 1.0648, 1.9883])).A*2
a = np.concatenate([np.arange(50), np.arange(25,0,-1), np.arange(25)])[:,None]/5
smin = 1
smax = 20
Q_cap = 10
Fmin = -0.1
Fmax = 0.5