-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_pruning.py
68 lines (48 loc) · 2.12 KB
/
simple_pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
Optuna example that demonstrates a pruner.
In this example, we optimize a classifier configuration using scikit-learn. Note that, to enable
the pruning feature, the following 2 methods are invoked after each step of the iterative training.
(1) :func:`optuna.trial.Trial.report`
(2) :func:`optuna.trial.Trial.should_prune`
You can run this example as follows:
$ python simple_prunning.py
"""
import optuna
from optuna.trial import TrialState
import sklearn.datasets
import sklearn.linear_model
import sklearn.model_selection
# FYI: Objective functions can take additional arguments
# (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args).
def objective(trial):
iris = sklearn.datasets.load_iris()
classes = list(set(iris.target))
train_x, valid_x, train_y, valid_y = sklearn.model_selection.train_test_split(
iris.data, iris.target, test_size=0.25
)
alpha = trial.suggest_float("alpha", 1e-5, 1e-1, log=True)
clf = sklearn.linear_model.SGDClassifier(alpha=alpha)
for step in range(100):
clf.partial_fit(train_x, train_y, classes=classes)
# Report intermediate objective value.
intermediate_value = clf.score(valid_x, valid_y)
trial.report(intermediate_value, step)
# Handle pruning based on the intermediate value.
if trial.should_prune():
raise optuna.TrialPruned()
return clf.score(valid_x, valid_y)
if __name__ == "__main__":
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=100)
pruned_trials = study.get_trials(deepcopy=False, states=[TrialState.PRUNED])
complete_trials = study.get_trials(deepcopy=False, states=[TrialState.COMPLETE])
print("Study statistics: ")
print(" Number of finished trials: ", len(study.trials))
print(" Number of pruned trials: ", len(pruned_trials))
print(" Number of complete trials: ", len(complete_trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))