Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError: Tracer cannot infer type of Seq2SeqLMOutput #1246

Open
ling976 opened this issue Apr 22, 2023 · 0 comments
Open

RuntimeError: Tracer cannot infer type of Seq2SeqLMOutput #1246

ling976 opened this issue Apr 22, 2023 · 0 comments

Comments

@ling976
Copy link

ling976 commented Apr 22, 2023

你好,我在使用torch.jit.trace对模型进行追踪的时候发生了一个错误

错误信息为:

RuntimeError: Tracer cannot infer type of Seq2SeqLMOutput

下面是我这边的代码:

 tokenizer = AutoTokenizer.from_pretrained('./outputs/model_files/')
 model = AutoModelForSeq2SeqLM.from_pretrained('./outputs/model_files/')

 device = torch.device("cpu")
 model.to(device)
 model.eval()

 sample_sentence = "generate some numbers"
 encoding = tokenizer(sample_sentence, 
                    padding="max_length",
                    max_length=5,
                    return_tensors="pt",
                    return_attention_mask=True,
                    truncation=True)
 input_ids = encoding.input_ids
 attention_mask = encoding.attention_mask
 decoder_input_ids = torch.ones(1,1, dtype=torch.int32) * model.config.decoder_start_token_id

 traced_model = torch.jit.trace(model, (input_ids,attention_mask,decoder_input_ids),strict=False)
 traced_model.save("./model.pt")

具体的错误为信息:

 D:\Program Files\Python310\lib\site-packages\transformers\modeling_utils.py:701: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
 if causal_mask.shape[1] < attention_mask.shape[1]:
 Traceback (most recent call last):
  File "E:\Python\project\Chinese_Chat_T5_Base-main\convertModel.py", line 37, in <module>
traced_model = torch.jit.trace(model, (input_ids,attention_mask,decoder_input_ids),strict=False)
  File "D:\Program Files\Python310\lib\site-packages\torch\jit\_trace.py", line 759, in trace
return trace_module(
  File "D:\Program Files\Python310\lib\site-packages\torch\jit\_trace.py", line 976, in trace_module
module._c._create_method_from_trace(
RuntimeError: Tracer cannot infer type of Seq2SeqLMOutput(loss=None, logits=tensor([[[-8.0331, -0.6127,  1.7029,  ..., -6.0205, -4.9355, -7.5521]]],
   grad_fn=<UnsafeViewBackward0>), past_key_values=((tensor([[[[-4.1845e-01, -3.1748e+00,  3.5584e-01,  1.3317e-01, -4.8382e-01,
        4.9041e-01,  1.2883e+00,  5.5251e-01,  2.3777e+00,  3.6629e-01,
       -2.3793e-01,  1.6337e+00,  9.4133e-01, -1.0904e+00, -2.8644e+00,
       -5.2565e-02,  2.9996e-01, -4.1858e-01, -7.8744e-01, -1.7734e+00,
       -1.0728e+00,  5.5014e-01, -1.5405e+00,  2.7343e+00,  3.5340e+00,
       -1.5999e-02, -7.7990e-01,  4.5489e-01, -2.4964e-01, -2.9343e-01,
        7.0564e-01,  9.1929e-01,  3.4561e+00, -6.6381e-01,  8.5702e-01,
        6.3156e-01, -7.5711e-01,  1.6548e+00, -8.5602e-01, -9.3094e-01,
        9.1188e-02, -8.6472e-01,  6.4054e-01,  4.7034e-01,  3.4763e+00,
       -1.0079e+00,  1.2279e-01,  1.5227e+00,  1.6583e-01,  9.4017e-01,
        1.5735e+00,  3.4655e-01, -8.0972e-01,  9.2279e-01,  3.1652e-01,
       -2.3178e+00,  5.2484e-02,  4.8382e-01, -1.7146e-01,  2.4539e+00,

.......

     [-2.7458e-03, -4.8062e-02, -5.2608e-02,  ..., -4.8220e-03,
        5.0419e-02,  2.8005e-03]]]], grad_fn=<TransposeBackward0>))), decoder_hidden_states=None, decoder_attentions=None, cross_attentions=None, encoder_last_hidden_state=tensor([[[-0.0070,  0.1318, -0.0300,  ...,  0.0244, -0.0696,  0.0580],
     [-0.0274,  0.0240, -0.0552,  ..., -0.0846, -0.0992,  0.0408],
     [-0.0647,  0.0068, -0.0779,  ...,  0.0064,  0.0316,  0.0111],
     [-0.0445, -0.0067, -0.0273,  ...,  0.0320,  0.0382,  0.0814],
     [-0.0006,  0.0002,  0.0010,  ..., -0.0002,  0.0009, -0.0009]]],
   grad_fn=<MulBackward0>), encoder_hidden_states=None, encoder_attentions=None)
  :Dictionary inputs to traced functions must have consistent type. Found Tensor and Tuple[Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor]]

原模型地址为:https://huggingface.co/mxmax/Chinese_Chat_T5_Base

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant