Skip to content

RuntimeError: Tracer cannot infer type of Seq2SeqLMOutput #1246

Open
@ling976

Description

@ling976

你好,我在使用torch.jit.trace对模型进行追踪的时候发生了一个错误

错误信息为:

RuntimeError: Tracer cannot infer type of Seq2SeqLMOutput

下面是我这边的代码:

 tokenizer = AutoTokenizer.from_pretrained('./outputs/model_files/')
 model = AutoModelForSeq2SeqLM.from_pretrained('./outputs/model_files/')

 device = torch.device("cpu")
 model.to(device)
 model.eval()

 sample_sentence = "generate some numbers"
 encoding = tokenizer(sample_sentence, 
                    padding="max_length",
                    max_length=5,
                    return_tensors="pt",
                    return_attention_mask=True,
                    truncation=True)
 input_ids = encoding.input_ids
 attention_mask = encoding.attention_mask
 decoder_input_ids = torch.ones(1,1, dtype=torch.int32) * model.config.decoder_start_token_id

 traced_model = torch.jit.trace(model, (input_ids,attention_mask,decoder_input_ids),strict=False)
 traced_model.save("./model.pt")

具体的错误为信息:

 D:\Program Files\Python310\lib\site-packages\transformers\modeling_utils.py:701: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
 if causal_mask.shape[1] < attention_mask.shape[1]:
 Traceback (most recent call last):
  File "E:\Python\project\Chinese_Chat_T5_Base-main\convertModel.py", line 37, in <module>
traced_model = torch.jit.trace(model, (input_ids,attention_mask,decoder_input_ids),strict=False)
  File "D:\Program Files\Python310\lib\site-packages\torch\jit\_trace.py", line 759, in trace
return trace_module(
  File "D:\Program Files\Python310\lib\site-packages\torch\jit\_trace.py", line 976, in trace_module
module._c._create_method_from_trace(
RuntimeError: Tracer cannot infer type of Seq2SeqLMOutput(loss=None, logits=tensor([[[-8.0331, -0.6127,  1.7029,  ..., -6.0205, -4.9355, -7.5521]]],
   grad_fn=<UnsafeViewBackward0>), past_key_values=((tensor([[[[-4.1845e-01, -3.1748e+00,  3.5584e-01,  1.3317e-01, -4.8382e-01,
        4.9041e-01,  1.2883e+00,  5.5251e-01,  2.3777e+00,  3.6629e-01,
       -2.3793e-01,  1.6337e+00,  9.4133e-01, -1.0904e+00, -2.8644e+00,
       -5.2565e-02,  2.9996e-01, -4.1858e-01, -7.8744e-01, -1.7734e+00,
       -1.0728e+00,  5.5014e-01, -1.5405e+00,  2.7343e+00,  3.5340e+00,
       -1.5999e-02, -7.7990e-01,  4.5489e-01, -2.4964e-01, -2.9343e-01,
        7.0564e-01,  9.1929e-01,  3.4561e+00, -6.6381e-01,  8.5702e-01,
        6.3156e-01, -7.5711e-01,  1.6548e+00, -8.5602e-01, -9.3094e-01,
        9.1188e-02, -8.6472e-01,  6.4054e-01,  4.7034e-01,  3.4763e+00,
       -1.0079e+00,  1.2279e-01,  1.5227e+00,  1.6583e-01,  9.4017e-01,
        1.5735e+00,  3.4655e-01, -8.0972e-01,  9.2279e-01,  3.1652e-01,
       -2.3178e+00,  5.2484e-02,  4.8382e-01, -1.7146e-01,  2.4539e+00,

.......

     [-2.7458e-03, -4.8062e-02, -5.2608e-02,  ..., -4.8220e-03,
        5.0419e-02,  2.8005e-03]]]], grad_fn=<TransposeBackward0>))), decoder_hidden_states=None, decoder_attentions=None, cross_attentions=None, encoder_last_hidden_state=tensor([[[-0.0070,  0.1318, -0.0300,  ...,  0.0244, -0.0696,  0.0580],
     [-0.0274,  0.0240, -0.0552,  ..., -0.0846, -0.0992,  0.0408],
     [-0.0647,  0.0068, -0.0779,  ...,  0.0064,  0.0316,  0.0111],
     [-0.0445, -0.0067, -0.0273,  ...,  0.0320,  0.0382,  0.0814],
     [-0.0006,  0.0002,  0.0010,  ..., -0.0002,  0.0009, -0.0009]]],
   grad_fn=<MulBackward0>), encoder_hidden_states=None, encoder_attentions=None)
  :Dictionary inputs to traced functions must have consistent type. Found Tensor and Tuple[Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor]]

原模型地址为:https://huggingface.co/mxmax/Chinese_Chat_T5_Base

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions