-
Notifications
You must be signed in to change notification settings - Fork 174
/
test_DataParallelTable.lua
867 lines (735 loc) · 27.1 KB
/
test_DataParallelTable.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
require 'cunn'
require 'optim'
-- If fbcunn and fbnn exists we'll do a profile of DataParallel
local profileDp = pcall(function() require 'fbcunn'; require 'fbnn' end)
local baseGpu = 1 -- First GPU to use
local numGpus = cutorch.getDeviceCount()
torch.setdefaulttensortype('torch.DoubleTensor')
torch.setnumthreads(8)
cutorch.setDevice(baseGpu)
cutorch.reserveStreams(1)
local typenames = {
'torch.CudaTensor',
'torch.CudaDoubleTensor',
}
local t2cpu = {
['torch.CudaTensor'] = 'torch.FloatTensor',
['torch.CudaDoubleTensor'] = 'torch.DoubleTensor',
}
local function checkHalf()
if cutorch.hasHalf then
table.insert(typenames, 'torch.CudaHalfTensor')
t2cpu['torch.CudaHalfTensor'] = 'torch.HalfTensor'
end
end
local function half_max_error(maxabs)
-- arbitrarily double the precision limit
return 2 * ((maxabs and (2^(math.floor(math.log(maxabs) / math.log(2)))) * (2^(-10))) or 0)
end
-- Create an instance of the test framework
function precision(typename, max_error)
if typename == 'torch.CudaHalfTensor' then
return 5e-2 + half_max_error(max_error)
else
return 1e-5
end
end
-- Create an instance of the test framework
local mytester = torch.Tester()
local test = torch.TestSuite()
local function copyTable(x) -- Shallow copy
local ret = {}
for key, value in pairs(x) do ret[key] = value end
return ret
end
local function createSplitNetwork(dim, dimSize)
local split = nn.ConcatTable()
for i = 1, dimSize do
split:add(nn.Narrow(dim, i, 1))
end
return split
end
-- Build a binary classifier that takes in a table of tensors and outputs
-- a table of tensors. We will split the BATCHES across GPUs.
local function buildNet(width, height, pool, feat, filt, tableInOut, numConvs)
local net = nn.Sequential()
if tableInOut then
net:add(nn.JoinTable(2)) -- Join R,G,B tensors into RGB
end
assert(math.fmod(filt,2) == 1)
for i = 1, numConvs do
local fin = 3
if (i > 1) then fin = feat end
net:add(nn.SpatialConvolutionMM(fin, feat, filt, filt, 1, 1, (filt-1)/2))
net:add(nn.Threshold())
end
net:add(nn.SpatialMaxPooling(pool, pool))
net:add(nn.Reshape(width * height * feat / (pool * pool)))
net:add(nn.Linear(width * height * feat / (pool * pool), 2))
-- net:add(nn.SoftMax()) -- This is fake anyway, so just do regression :-)
if tableInOut then
net:add(createSplitNetwork(2,2))
end
return net
end
local function serialize(net)
net:clearState()
local uniq = sys.execute('echo "$(($(date +%s%N)/1000000))"')
local f = torch.DiskFile(string.format('/tmp/%s', uniq), 'w')
f:binary()
f:writeObject(net)
f:close()
return string.format('/tmp/%s', uniq)
end
local function deserialize(file)
local f = torch.DiskFile(file)
f:binary()
local net = f:readObject()
f:close()
os.execute(string.format('rm %s', file))
return net
end
function test.DataParallelTable()
for k, typename in ipairs(typenames) do
test_DataParallelTable(typename)
end
end
function test_DataParallelTable(gtype)
local width = 16
local height = 16
local pool = 4
local feat = 8
local filt = 5
local numConvs = 2
local numSgdSteps = 10
local syncGpuCpuParamsEvery = 4
assert(numGpus > 1)
-- test for various batchSizes, not necessarily multiples of nGpus:
for _,batchSize in ipairs {2 * numGpus, 9, 15} do
collectgarbage()
-- Build a CPU model
local cpuClassifier = buildNet(width, height, pool, feat, filt, true,
numConvs)
-- Build a multi-GPU model
local gClassifier = nn.DataParallelTable(1):type(gtype)
for i = 1, numGpus do
local curGpu = math.fmod(baseGpu+(i-1)-1, cutorch.getDeviceCount()) + 1
cutorch.setDevice(curGpu)
gClassifier:add(cpuClassifier:clone():type(gtype), curGpu)
end
cutorch.setDevice(baseGpu)
-- Now wrap them in layers that will split up the input tensor and join the
-- output tensor (I know this seems stupid - and it is - but we need to test
-- DataParallelTable under table inputs and when it is embedded in a network.
local cNet = nn.Sequential()
cNet:add(createSplitNetwork(2,3))
cNet:add(cpuClassifier)
cNet:add(nn.JoinTable(2))
cNet:type(gtype)
local gNet = nn.Sequential()
gNet:add(createSplitNetwork(2,3))
gNet:add(gClassifier)
gNet:add(nn.JoinTable(2):type(gtype))
gNet:get(1):type(gtype)
gNet:get(3):type(gtype)
-- Force in a serialization / deserialization pass ------------
local file = serialize(gNet)
gNet = nil
collectgarbage()
collectgarbage()
gNet = deserialize(file)
----------------------------------------------------------------
local cInput = torch.rand(batchSize, 3, height, width):type(gtype)
local gInput = cInput:type(gtype)
local cTarget = torch.rand(batchSize, 2):type(gtype)
local gTarget = cTarget:type(gtype):type(gtype)
local cParams, cGradParams = cNet:getParameters()
local gParams, gGradParams = gNet:getParameters()
assert(cutorch.getDevice() == baseGpu,
'getParameters: didnt restore GPU state')
-- Set up an MSE optimizer on the GPU and CPU
local optimStateCpu = {
learningRate = 0.1, -- Artificially big learning rate
weightDecay = 0,
momentum = 0.9,
dampening = 0,
learningRateDecay = 0,
nesterov = true,
}
local optimStateGpu = copyTable(optimStateCpu)
local optimMethod = optim.sgd
local criterionCpu = nn.MSECriterion():type(gtype)
local criterionGpu = criterionCpu:clone():type(gtype)
for i = 1, numSgdSteps do
collectgarbage()
local fevalCpu = function(x)
if x ~= cParams then cParams:copy(x) end
cNet:zeroGradParameters()
-- FPROP + BPROP on CPU
local output = cNet:forward(cInput)
local err = criterionCpu:forward(output, cTarget)
local gradOutput = criterionCpu:backward(output, cTarget)
local gradInput = cNet:backward(cInput, gradOutput)
return err, cGradParams
end
local fevalGpu = function(x)
if x ~= gParams then gParams:copy(x) end
gNet:zeroGradParameters()
assert(cutorch.getDevice() == baseGpu,
'zeroGradParameters: didnt restore GPU state')
-- FPROP + BPROP on GPU
local output = gNet:forward(gInput)
assert(cutorch.getDevice() == baseGpu,
'DataParallelTable:forward didnt restore GPU state')
local err = criterionGpu:forward(output, gTarget)
local gradOutput = criterionGpu:backward(output, gTarget)
local gradInput = gNet:backward(gInput, gradOutput)
assert(cutorch.getDevice() == baseGpu,
'DataParallelTable:add didnt restore GPU state')
return err, gGradParams
end
-- Perform an SGD step on the GPU and CPU
optimMethod(fevalCpu, cParams, optimStateCpu)
optimMethod(fevalGpu, gParams, optimStateGpu)
gNet:findModules('nn.DataParallelTable')[1]:syncParameters()
assert(cutorch.getDevice() == baseGpu,
'DataParallelTable:syncParameters didnt restore GPU state')
-- Now make sure that everything is the same
local cOutput = cNet.output
local gOutput = gNet.output
local cGradInput = cNet.gradInput
local gGradInput = gNet.gradInput
mytester:assertlt((cOutput:double() - gOutput:double()):abs():max(),
precision(gtype, cOutput:clone():double():abs():max()), 'fprop error ' .. gtype)
mytester:assertlt((criterionCpu.gradInput:double() -
criterionCpu.gradInput:double()):abs():max(),
precision(gtype, criterionGpu.gradInput:clone():double():abs():max()),
'CRITERION BPROP error ' .. gtype)
mytester:assertlt((cParams:double() - gParams:double()):abs():max(),
precision(gtype, cParams:clone():double():abs():max()), 'parameters error ' .. gtype)
mytester:assertlt((cGradParams:double() - gGradParams:double()):abs():max(),
precision(gtype, cGradParams:clone():double():abs():max()), 'BPROP error (gradParams) ' .. gtype)
mytester:assertlt((cGradInput:double() - gGradInput:double()):abs():max(),
precision(gtype, cGradInput:clone():double():abs():max()), 'BPROP error (gradInput) ' .. gtype)
-- Sync the CPU and GPU weights every few "epochs" to prevent floating point
-- drift between SGD iterations (ie, they will eventually be divergent after
-- enough iters)
if math.fmod(i, syncGpuCpuParamsEvery) == 0 then
local cp = cNet:parameters()
local gp = gNet:get(2):get(1):parameters()
assert(#cp == #gp)
for j = 1, #cp do
cp[j]:copy(gp[j])
end
end
end
end
end
function test.DataParallelTable_smallBatch()
for k, typename in ipairs(typenames) do
test_DataParallelTable_smallBatch(typename)
end
end
function test_DataParallelTable_smallBatch(gtype)
local net = nn.SpatialConvolution(3, 3, 3, 5):type(gtype)
local dpt = nn.DataParallelTable(1):type(gtype)
for i=1,numGpus do
cutorch.withDevice(i, function()
dpt:add(net:clone():type(gtype), i)
end)
end
-- Check for batches that are smaller than numGpus or don't divide evenly
for _,batchSize in ipairs{numGpus-1,2*numGpus-1} do
local input = torch[gtype:match('torch.(%a+)')](batchSize,3,10,10):uniform(-1, 1)
-- Check that forward works as expected
local output = dpt:forward(input)
local expected = net:forward(input)
assert((expected - output):abs():max() < precision(gtype, expected:clone():abs():max()), 'unexpected output')
local gradOutput = output:clone():uniform(-1, 1)
local gradInput = dpt:updateGradInput(input, gradOutput)
local expected = net:updateGradInput(input, gradOutput)
assert((expected - gradInput):abs():max() < precision(gtype, expected:clone():abs():max()), 'unexpected gradInput')
end
end
function test.DataParallelTable_emptyTensor()
for k, typename in ipairs(typenames) do
test_DataParallelTable_emptyTensor(typename)
end
end
function test_DataParallelTable_emptyTensor(gtype)
local net = nn.Sequential():add(nn.SelectTable(2)):add(nn.Linear(10,2)):type(gtype)
local dpt = nn.DataParallelTable(1):type(gtype)
for i=1,numGpus do
cutorch.withDevice(i, function()
dpt:add(net:clone():type(gtype), i)
end)
end
local input = {torch[gtype:match('torch.(%a+)')](0), torch[gtype:match('torch.(%a+)')](numGpus, 10):fill(1)}
local output = dpt:forward(input)
local expected = net:forward(input)
assert((output - expected ):abs():max() < precision(gtype, expected:clone():abs():max()), 'unexpected output')
local gradOutput = output:clone():uniform(-1,1)
local gradInput = dpt:backward(input, gradOutput)
local expected = net:backward(input, gradOutput)
assert((expected[2] - gradInput[2]):abs():max() < precision(gtype, expected[2]:clone():abs():max()), 'unexpected gradInput')
end
function test.DataParallelTable_type()
for k, typename in ipairs(typenames) do
test_DataParallelTable_type(typename)
end
end
function test_DataParallelTable_type(gtype)
local ctype = t2cpu[gtype]
local net = nn.SpatialConvolution(3, 3, 3, 5):type(ctype)
local dpt = nn.DataParallelTable(1):type(gtype)
for i=1,numGpus do
cutorch.withDevice(i, function()
dpt:add(net:clone(), i)
end)
end
dpt:type(gtype)
ok = pcall(function() dpt:type(ctype) end)
assert(not ok, 'should not be able to call DataParallelTable:type(' .. ctype .. ')')
end
function test.DataParallelTable_sync()
for k, typename in ipairs(typenames) do
test_DataParallelTable_sync(typename)
end
end
function test_DataParallelTable_sync(gtype)
-- Test that DataParallelTable automatically syncParameters in updateOutput
-- if you forget to call :syncParameters()
local nSteps = 10
local net = nn.Sequential()
:add(nn.Linear(10, 10))
:add(nn.ReLU(true))
:add(nn.Linear(10, 10))
:type(gtype)
local dpt = nn.DataParallelTable(1):type(gtype)
for i=1,numGpus do
cutorch.withDevice(i, function()
dpt:add(net:clone(), i)
end)
end
local criterion = nn.MSECriterion():type(gtype)
local optimState = {
learningRate = 1,
momentum = 0,
}
local input = torch[gtype:match('torch.(%a+)')](numGpus,10)
local target = torch[gtype:match('torch.(%a+)')](numGpus,10)
local function feval(net)
local params, gradParams = net:getParameters()
return params, function(x)
net:zeroGradParameters()
local output = net:forward(input)
local err = criterion:forward(output, target)
local gradOutput = criterion:backward(output, target)
local gradInput = net:backward(input, gradOutput)
return err, gradParams
end
end
local paramsDpt, fevalDpt = feval(dpt)
local paramsBase, fevalBase = feval(net)
for i=1,nSteps do
input:uniform(-1, 1)
target:uniform(-1, 1)
optim.sgd(fevalDpt, paramsDpt, optimState)
optim.sgd(fevalBase, paramsBase, optimState)
end
assert((paramsDpt - paramsBase):abs():max() < precision(gtype, paramsDpt:clone():abs():max()),
'parameters do not match')
end
function test.DataParallelTable_serialize()
for k, typename in ipairs(typenames) do
test_DataParallelTable_serialize(typename)
end
end
function test_DataParallelTable_serialize(gtype)
-- Test serialization after getParameters()
local net = nn.Linear(10, 10):type(gtype)
local dpt = nn.DataParallelTable(1):type(gtype)
for i=1,numGpus do
cutorch.withDevice(i, function()
dpt:add(net:clone():type(gtype), i)
end)
end
dpt:getParameters()
dpt = deserialize(serialize(dpt))
local input = torch[gtype:match('torch.(%a+)')](numGpus,10):uniform(-1, 1)
-- Check that forward works as expected
local output = dpt:forward(input)
assert(output and output:sum() ~= 0, 'unexpected output')
-- Zero the weights on the first tower and sync paramteters
-- to check that Tensors are pointing to the proper storages
dpt.flattenedParams[1][1]:zero()
dpt:syncParameters()
output = dpt:forward(input)
assert(output:sum() == 0, 'weights not zeroed')
end
function test.DataParallelTable_flattenParameters()
for k, typename in ipairs(typenames) do
test_DataParallelTable_flattenParameters(typename)
end
end
function test_DataParallelTable_flattenParameters(gtype)
-- Wrap only a part of a network with data parallel table and
-- check if the correct number of parameters have been copied
local seq = nn.Sequential()
local layer1 = nn.Linear(10, 10):type(gtype)
local layer2 = nn.Linear(10, 5):type(gtype)
local dpt = nn.DataParallelTable(1, true, true):threads():type(gtype)
dpt:add(layer2, torch.range(1, numGpus):totable())
seq:add(layer1):add(dpt)
seq:getParameters()
local input = torch.randn(7, 10):type(gtype)
seq:forward(input)
-- There are 55 parameters in layer 2 (50 + 5 bias weights)
assert(dpt.flattenedParams[1][1]:size(1) == 55, "Incorrect number of " ..
"parameters copied")
-- Check grad weights
assert(dpt.flattenedParams[1][2]:size(1) == 55, "Incorrect number of " ..
"parameters copied")
end
function test.DataParallelTable_misc()
for k, typename in ipairs(typenames) do
test_DataParallelTable_misc(typename)
end
end
function test_DataParallelTable_misc(gtype)
local net = nn.Sequential()
:add(nn.Linear(3, 10))
:add(nn.ReLU())
:add(nn.Linear(10, 7))
local dpt = nn.DataParallelTable(1):type(gtype)
:add(net, torch.range(1, numGpus):totable())
:threads()
:type(gtype)
local input = torch.randn(8, 3):type(gtype)
local output = dpt:forward(input)
-- check that clone works
dpt = dpt:clone()
local output2 = dpt:forward(input)
assert((output2 - output):abs():max() == 0)
-- check findModules and listModules
local modules = dpt:listModules()
assert(#modules == #net:listModules() + 1)
assert(torch.type(modules[1]) == 'nn.DataParallelTable')
assert(torch.type(modules[2]) == 'nn.Sequential')
assert(#dpt:findModules('nn.ReLU') == 1)
end
function test.DataParallelTable_noGradInput()
for k, typename in ipairs(typenames) do
test_DataParallelTable_noGradInput(typename)
end
end
function test_DataParallelTable_noGradInput(gtype)
local net = nn.Sequential()
:add(nn.LookupTable(10, 10))
:add(nn.Linear(10, 7))
:add(nn.ReLU())
:type(gtype)
local dpt = nn.DataParallelTable(1)
:add(net, torch.range(1, numGpus):totable())
:threads()
:type(gtype)
local input = torch.Tensor(5):random(10):type(gtype)
local output1 = net:forward(input):clone()
local gradOutput = output1:clone():uniform(-1, 1)
local gradInput1 = net:backward(input, gradOutput):clone()
local output2 = dpt:forward(input)
local gradInput2 = dpt:backward(input, gradOutput)
mytester:assertlt((output1 - output2):abs():max(), precision(gtype, output1:clone():abs():max()),
'forward prop error')
mytester:asserteq(gradInput2:nElement(), gradInput1:nElement())
end
function test.DataParallelTable_accGradParameters()
for k, typename in ipairs(typenames) do
test_DataParallelTable_accGradParameters(typename)
end
end
function test_DataParallelTable_accGradParameters(gtype)
local net = nn.Sequential()
:add(nn.Linear(3, 10))
:add(nn.ReLU())
:add(nn.Linear(10, 7))
:type(gtype)
local inputs = {}
local gradOutputs = {}
for i=1,3 do
inputs[i] = torch.randn(8, 3):type(gtype)
gradOutputs[i] = torch.randn(8, 7):type(gtype)
end
local configs = {
{1, false, false},
{1, true, false},
}
local function accumulateGradient(m)
m:zeroGradParameters()
for i=1,#inputs do
m:forward(inputs[i])
m:backward(inputs[i], gradOutputs[i])
end
m:updateParameters(0.5)
end
local base = net:clone()
accumulateGradient(base)
local expected = base:forward(inputs[1])
for _, config in ipairs(configs) do
local dpt = nn.DataParallelTable(table.unpack(config))
:add(net:clone(), torch.range(1, numGpus):totable()):type(gtype)
accumulateGradient(dpt)
local output = dpt:forward(inputs[1])
mytester:assertlt((output - expected):abs():max(), precision(gtype, expected:clone():abs():max()), 'invalid output ' .. gtype)
end
end
function test.DataParallelTable_apply()
for k, typename in ipairs(typenames) do
test_DataParallelTable_apply(typename)
end
end
function test_DataParallelTable_apply(gtype)
local net = nn.Sequential()
:add(nn.Linear(3, 10))
:add(nn.ReLU())
:add(nn.Linear(10, 7))
:type(gtype)
local inputs = {}
local gradOutputs = {}
for i=1,3 do
inputs[i] = torch.randn(8, 3):type(gtype)
gradOutputs[i] = torch.randn(8, 7):type(gtype)
end
local configs = {
{1, false, false},
{1, true, false},
}
local function trainNetwork(m)
-- Test that apply doesn't break everything. This will be very slow
-- in the training loop, but should still be correct.
local function emptyFn() end
m:apply(emptyFn)
for i=1,#inputs do
m:zeroGradParameters()
m:forward(inputs[i])
m:backward(inputs[i], gradOutputs[i])
m:updateParameters(0.1)
m:apply(emptyFn)
end
end
local base = net:clone()
trainNetwork(base)
local expected = base:forward(inputs[1])
for _, usethreads in ipairs{false,true} do
for _, config in ipairs(configs) do
local dpt = nn.DataParallelTable(table.unpack(config))
:add(net:clone(), torch.range(1, numGpus):totable()):type(gtype)
if usethreads then
dpt:threads()
end
trainNetwork(dpt)
local output = dpt:forward(inputs[1])
mytester:assertlt((output - expected):abs():max(), precision(gtype, expected:clone():abs():max()),
'invalid output: flatten=' .. tostring(config[2]) ..
' threads=' .. tostring(usethreads))
end
end
end
function test.DataParallelTable_streams()
for k, typename in ipairs(typenames) do
test_DataParallelTable_streams(typename)
end
end
function test_DataParallelTable_streams(gtype)
local net = nn.Sequential()
:add(nn.Linear(3, 10))
:add(nn.ReLU())
:add(nn.Linear(10, 7))
:type(gtype)
local input = torch.randn(8, 3):type(gtype)
local gradOutput = torch.randn(8, 7):type(gtype)
local gOutput = net:forward(input):clone()
net:zeroGradParameters()
local gGradInput = net:backward(input, gradOutput):clone()
local configs = {
{1, false, false},
{1, true, false},
{1, true, true},
}
local function test(dpt)
local output = dpt:forward(input)
dpt:zeroGradParameters()
local gradInput = dpt:backward(input, gradOutput)
mytester:assert((output - gOutput):abs():max() == 0, 'invalid output')
mytester:assert((gradInput - gGradInput):abs():max() == 0,
'invalid gradInput')
end
for _, stream in ipairs{0, 1} do
cutorch.setStream(stream)
for _, config in ipairs(configs) do
for _, threads in ipairs{false, true} do
local dpt = nn.DataParallelTable(table.unpack(config))
:add(net, torch.range(1, numGpus):totable())
:type(gtype)
if threads then
dpt:threads(function()
cutorch.reserveStreams(1)
cutorch.setStream(stream)
end)
end
test(dpt)
end
end
end
cutorch.setStream(0)
end
function test.DataParallelTable_emptyData()
for k, typename in ipairs(typenames) do
test_DataParallelTable_emptyData(typename)
end
end
function test_DataParallelTable_emptyData(gtype)
local function eq(a,b)
if not torch.isTensor(a) then
local res = true
for i = 1, #a do
res = res and eq(a[i], b[i])
end
return res
end
return a:clone():add(-b):abs():max() == 0
end
local identity = nn.Linear(5,5)
identity.bias:zero()
identity.weight=torch.eye(5)
local a = nn.DataParallelTable(1)
a:add(identity, torch.range(1,numGpus):totable())
a:type(gtype)
local inputs = {torch.range(1,numGpus*5):reshape(numGpus,5):type(gtype),
torch.range(1,5):reshape(1,5):type(gtype),
torch.range(1,10):reshape(2,5):type(gtype),
}
for _, input in ipairs(inputs) do
local output = a:forward(input)
local gradInput = a:backward(input, output)
mytester:assert(eq(input, output))
mytester:assert(eq(input, gradInput))
end
a = nn.DataParallelTable(1)
a:add(nn.ParallelTable():add(identity):add(identity), torch.range(1,numGpus):totable())
a:type(gtype)
for _, input in ipairs(inputs) do
input = {input, input}
local output = a:forward(input)
local gradInput = a:backward(input, output)
mytester:assert(eq(input, output))
mytester:assert(eq(input, gradInput))
end
end
function test.ProfileDataParallelTable()
for k, typename in ipairs(typenames) do
test_ProfileDataParallelTable(typename)
end
end
function test_ProfileDataParallelTable(gtype)
local width = 32
local height = 32
local pool = 4
local feat = 128
local filt = 7
local numConvs = 4
local numRepeats = 10
local modulesToTest = {}
modulesToTest['DataParallelTable'] = nn.DataParallelTable
if profileDp then
modulesToTest['DataParallel'] = nn.DataParallel
end
local deviceCount = numGpus
assert(deviceCount > 1)
for moduleName, module in pairs(modulesToTest) do
for numGpus = 1, deviceCount do
collectgarbage()
print('Profiling ' .. moduleName .. ' with ' .. numGpus .. ' gpus')
local batchSize = 2 * 3 * 4
assert(math.fmod(batchSize, numGpus) == 0)
-- Build a CPU model
local cNet = buildNet(width, height, pool, feat, filt, false, numConvs)
-- Build a multi-GPU model
local gNet = module(1)
if (moduleName == 'DataParallel') then
cutorch.setDevice(baseGpu)
gNet:type(gtype)
elseif (moduleName == 'DataParallelTable') then
gNet:type(gtype)
end
for i = 1, numGpus do
local curGpu = math.fmod(baseGpu+(i-1)-1, cutorch.getDeviceCount())+1
cutorch.setDevice(curGpu)
gNet:add(cNet:clone():type(gtype), curGpu)
end
cutorch.setDevice(baseGpu)
local input = torch.rand(batchSize, 3, height, width):type(gtype)
local target = torch.rand(batchSize, 2):type(gtype)
local gParams, gGradParams
if (moduleName == 'DataParallelTable') then
-- Force in a serialization / deserialization pass ------------
local file = serialize(gNet)
gNet = nil
collectgarbage()
collectgarbage()
gNet = deserialize(file)
----------------------------------------------------------------
gParams, gGradParams = gNet:getParameters()
end
-- Set up an MSE optimizer on the GPU
local optimState = {
learningRate = 0.1,
weightDecay = 0,
momentum = 0.9,
dampening = 0,
learningRateDecay = 0,
nesterov = true,
}
local optimMethod = optim.sgd
local criterion = nn.MSECriterion():type(gtype)
local timeGpuNet = 0
local opt
if (moduleName == 'DataParallel') then
opt = nn.Optim(gNet, optimState)
end
-- Call forward and backward once to hide allocations in profile
do
local output = gNet:forward(input)
gNet:backward(input, output)
end
for i = 1, numRepeats do
collectgarbage()
local fevalGpu = function(x)
if x ~= gParams then gParams:copy(x) end
gNet:zeroGradParameters()
local output = gNet:forward(input)
local err = criterion:forward(output, target)
local gradOutput = criterion:backward(output, target)
local gradInput = gNet:backward(input, gradOutput)
return err, gGradParams
end
-- Perform an SGD step and profile it
sys.tic()
if (moduleName == 'DataParallelTable') then
optimMethod(fevalGpu, gParams, optimState)
gNet:findModules('nn.DataParallelTable')[1]:syncParameters()
else
opt:optimize(optim.sgd, input, target, criterion)
end
cutorch.synchronize()
timeGpuNet = timeGpuNet + sys.toc()
collectgarbage()
end
print(' Time per FPROP+BPROP: ' .. timeGpuNet / numRepeats)
end
end
end
-- Now run the test above
--checkHalf() -- half not enabled yet for DataParallelTable
mytester:add(test)
mytester:run()