forked from EtalumaSupport/LumaViewPro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_stitcher.py
393 lines (324 loc) · 14.3 KB
/
image_stitcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Jun 20 12:36:12 2022
@author: oriamir
"""
#-------------------------------------------------------------------------------
# This open source software was developed for use with Etaluma microscopes.
#
# AUTHORS:
# Ori Amir, The Earthineering Company
# Kevin Peter Hickerson, The Earthineering Company
#
# MODIFIED:
# Ocotber 5, 2023
#-------------------------------------------------------------------------------
import numpy as np
import pandas as pd
import os
import cv2
import glob
import imutils
from color_transfer import color_transfer, image_stats #use pip install color_transfer
from lvp_logger import logger
MAX_TRIES = 20 #number of tries to tolerate without any results before quiting with an error
N_RESULTS = 5 #number of times the Low algorithm is run and gets result, to select the best result
#the higher N_RESULTS the better the output, but the slower
error_codes = ["OK","ERR_NEED_MORE_IMGS","ERR_HOMOGRAPHY_EST_FAIL","ERR_CAMERA_PARAMS_ADJUST_FAIL"]
def image_stitcher(images_folder,
combine_colors = False,
ext = "tiff",
#method = "features",
method = "position",
match_colors=False,
save_name = "./capture/last_composite_img.tiff",
display_image = False,
positions_file = None,
pos2pix = 2630,
post_process = False):
"""
The function stitches together multiple images that partially overlap into a single composite image.
Parameters
----------
images_folder : str
The full or relative path to the folder where the images are.
combine_colors : bool, optional
If True assumes images_folder contains the folders: red,green,blue.
The images in those directories should have names that if sorted alphabetically
will have the same order in all 3 directories.
ext : str, optional
The extension of the images. The default is "tiff".
method : str, optional
"features" - uses the David Low algorithm to detect common keypoints
"position" - uses position information to put toghether the individual images
The default is "features"
match_colors : bool, optional
If True would match the color space of all images in images_folder to the middle
image. WARNINING - WOULD OVERWRITE THE IMAGES!!
The default is False
display_image : bool, optional
Whether to display the image onscreen. The default is false
positions_file : str
A text file with the positions of the aquired images in order. Only needed if method = position.
The default is None
pos2pix : float
The factor by which you need to multiply the position numbers to translate to pixel values.
Only needed if method = 'position'. The default is 2630 (revise if images vary in resolution/size)
post_process : bool, optional
Whether to run post processing on the stitched imaged.
For example, make the edges of the composite image straight.
The default is False.
Returns
-------
stitched_img : Numpy array
The composite image.
"""
try:
if combine_colors:
combine_rgb(images_folder,ext=ext)
images_folder = os.path.join(images_folder,'ims_color')
if match_colors:
match_color_space(images_folder = images_folder,ext = ext)
if method == "features":
stitched_img = feature_stitcher(images_folder, ext = ext, n_results = N_RESULTS)
elif method == "position":
assert positions_file, "please provide the textfile name with the positions of the aquired images for argument positions_file (or choose method = 'features') "
stitched_img = position_stitcher(images_folder,positions_file,pos2pix=pos2pix,ext=ext)
elif method == "s_shape":
stitched_img = s_shape_stitcher(images_folder,ext = ext,n_images_per_row = 3)
if post_process:
stitched_img = zoom_frame(stitched_img)
except:
logger.error(f"Failed to stitched image.")
try:
if cv2.imwrite(save_name, stitched_img):
logger.info(f"[LVP Stitch] image_stitcher() saved file {save_name}")
else:
logger.error(f"[LVP stitch] did not save stitched image {save_name}.")
except:
logger.error(f"Failed to save stitched image {save_name}.")
if display_image:
display_img(stitched_img)
return stitched_img
def feature_stitcher(images_folder, ext = 'tiff', n_results = 5):
images = grab_images(images_folder,ext = ext,to_sort = True)
imageStitcher = cv2.Stitcher_create(mode = cv2.STITCHER_SCANS)
results = []
try:
for k in range(n_results):
error=True
tries = 0
while error and tries < MAX_TRIES:
tries += 1
#print("stitching: try #",tries)
error, stitched_img = imageStitcher.stitch(images)
if not error:
results.append(stitched_img)
#display_img(stitched_img)
assert results, "error: failed to stich images, likely insufficient matching keypoints detected, error code:"+str(error)+" "+error_codes[error]
except:
logger.error(f"Failed to stich images, likely insufficient matching keypoints detected.")
return
#im_sizes = np.array([im.shape[0]*im.shape[1] for im in results])
im_total_luminance = np.array([im.sum() for im in results])
stitched_img = results[np.argmax(im_total_luminance)]
return stitched_img
def s_shape_stitcher(images_folder="",image_list=[],ext = 'tiff',n_images_per_row = 3):
imageStitcher = cv2.Stitcher_create()
images = grab_images(images_folder=images_folder,image_list=image_list,ext = ext,to_sort = True)
row_counter = -1
rows = []
for i,img in enumerate(images):
print(i)
if i % n_images_per_row:
error=True
tries = 0
while error and tries < MAX_TRIES:
error, stch_img = imageStitcher.stitch(images)
tries += 1
if not error:
rows[row_counter] = stch_img
else:
rows.append(img)
row_counter += 1
stitched_img = rows[0]
for i in range(1,len(rows)):
error=True
tries = 0
while error and tries < MAX_TRIES:
error,temp_stitched = imageStitcher.stitch([stitched_img,rows[i]])
tries += 1
if not error:
stitched_img = temp_stitched
return stitched_img
def position_stitcher(images_folder, positions_file, pos2pix, ext = 'tiff'):
"""
Stitches the images based on position information rather than features. Assumes the
image file names once sorted correspond to the order of the positions in the positions_file.
Also assumes all input images are of the exact same size.
Parameters
----------
images_folder : str
The full or relative path to the folder where the images are.
positions_file : str
A text file with the positions of the aquired images in order.
pos2pix : float
The factor by which you need to multiply the position numbers to translate to pixel values.
Returns
-------
stitched_img : Numpy array
The composite image.
"""
reverse_y = True
positions = pd.read_csv(positions_file, names = ["X","Y"], delimiter= " ")
positions -= positions.min(axis=0)
positions *= pos2pix
positions = positions.sort_values(['X','Y'], ascending = False)
positions = positions.apply(np.floor).astype(int)
images = grab_images(images_folder, ext = ext, to_sort = True)
imx = images[0].shape[1]+positions['X'].max() #width of composite image
imy = images[0].shape[0]+positions['Y'].max() #width of composite image
if reverse_y: positions["Y"] = imy - positions["Y"]
stitched_img = np.zeros((imy,imx,3),dtype="uint8")
for i,row in positions.iterrows():
if reverse_y:
stitched_img[row['Y']-images[i].shape[0]:row['Y'],row['X']:row['X']+images[i].shape[1],:] = images[i]
else:
stitched_img[row['Y']:row['Y']+images[i].shape[0],row['X']:row['X']+images[i].shape[1],:] = images[i]
return stitched_img
def match_color_space(images_folder, ext = "tiff"):
image_paths = glob.glob(os.path.join(images_folder,'*.'+ext))
image_paths = np.array(image_paths)
image_paths.sort()
middle_image_indx = int(len(image_paths)-1)
source = cv2.imread(image_paths[middle_image_indx])
for i,target in enumerate(image_paths):
if i==middle_image_indx: continue
color_adjusted_img = color_transfer(source,cv2.imread(target))
cv2.imwrite(target, color_adjusted_img)
def grab_images(images_folder="",image_list=[],ext = 'tiff',to_sort = True):
"""
Grabs images from a folder, reads them into numpy arrays and returns
a list of these numpy arrays
Parameters
----------
[Note: provide images_folder OR image_list, not both (if both are provided images_list will be used)]
images_folder : str
The full or relative path to the folder where the images are.
image_list : list
A list of strings with the names (including path) of the image files to read.
If the list contains images already read (as NumPy arrays), the function
would simply return that array without further action as the "images" output
NOTE: assumes the image_list is already in the desired order, does no further sorting.
The default is [] - in which case images_folder will be relied upon.
ext : str, optional
The extension of the images. The default is 'tiff'.
to_sort : bool, optional
If True will sort images based on their names. The default is True.
NOTE: If image_list is provided, no sorting will take place.
Returns
-------
images : list (of numpy arrays)
A list of the image files read into numpy arrays.
"""
assert image_list or images_folder, "you must provide either the folder with the images or the list of images in order"
if not image_list:
try:
image_paths = glob.glob(os.path.join(images_folder,'*.'+ext))
assert image_paths,"Could not find any images with extension "+ext+". Please check the directory and extension."
except:
logger.error(f"Could not find any images with extension {ext}. Please check the directory and extension.")
return
if to_sort:
image_paths = np.array(image_paths)
image_paths.sort()
elif type(image_list[0]==str):
image_paths = image_list
else:
return image_list
images = []
for image in image_paths:
img = cv2.imread(image)
images.append(img)
return images
def combine_rgb(rgb_folder,ext="tiff"):
"""
Combines images from 3 color channels 'red','green','blue' into
full color images. Assumes rgb_folder contains so named 3 directories.
It further assumes that if the images in the 3 directories are sorted
by name alphabetically, the images in the 3 directories would correspond.
Generates a new directory in rgb_folder named 'ims_color' with the full color
images.
Parameters
----------
rgb_folder : str
The name of the folder where the 3 directories ('red','green','blue') are.
ext : str, optional
The extension of the image files. The default is "tiff".
Returns
-------
None.
"""
channels = ["red","green","blue"]
im_names_dict = {}
ims_dict = {}
for channel in channels:
ch_dir=os.path.join(rgb_folder,channel)
assert os.path.exists(ch_dir), 'imgs_dir must contian a subdirectory "'+ channel + '", lower case'
im_names_dict[channel] = np.array(glob.glob(os.path.join(ch_dir,"*."+ext)))
im_names_dict[channel].sort() #assumes the numbers in the file names correspond to order of aquisition
ims_dict[channel] = [cv2.imread(img) for img in im_names_dict[channel]]
rgb_imgs = [r+g+b for r,g,b in zip(ims_dict['red'],ims_dict['green'],ims_dict['blue'])]
if not os.path.exists(os.path.join(rgb_folder,'ims_color')):
os.mkdir(os.path.join(rgb_folder,'ims_color'))
for i,img in enumerate(rgb_imgs):
#display_img(img)
#print(os.path.join(imgs_dir,'rgb_images','image'+str(i)+'.'+ext))
cv2.imwrite(os.path.join(rgb_folder,'ims_color','image'+str(i)+'.'+ext),img)
def display_img(img):
"""
Displays image, waits for any key.
Parameters
----------
img : Numpy Array
A numpy array (likely 3D) representing an image.
Returns
-------
None.
"""
cv2.imshow("Stitched Image", img)
cv2.waitKey(0)
def zoom_frame(stitched_img):
"""
Fixes the compsite image by removing missing information areas along the outer
edges of the image by what amounts to zooming in a bit.
Parameters
----------
stitched_img : Numpy Array
The composite image to be fixed.
Returns
-------
stitched_img : Numpy Array
The fixed composite image.
"""
stitched_img = cv2.copyMakeBorder(stitched_img, 10, 10, 10, 10, cv2.BORDER_CONSTANT, (0,0,0))
gray = cv2.cvtColor(stitched_img, cv2.COLOR_BGR2GRAY)
thresh_img = cv2.threshold(gray, 0, 255 , cv2.THRESH_BINARY)[1]
contours = cv2.findContours(thresh_img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
areaOI = max(contours, key=cv2.contourArea)
mask = np.zeros(thresh_img.shape, dtype="uint8")
x, y, w, h = cv2.boundingRect(areaOI)
cv2.rectangle(mask, (x,y), (x + w, y + h), 255, -1)
minRectangle = mask.copy()
sub = mask.copy()
while cv2.countNonZero(sub) > 0:
minRectangle = cv2.erode(minRectangle, None)
sub = cv2.subtract(minRectangle, thresh_img)
contours = cv2.findContours(minRectangle.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
areaOI = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(areaOI)
stitched_img = stitched_img[y:y + h, x:x + w]
return stitched_img