-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathneural_network_pytorch.py
66 lines (55 loc) · 1.97 KB
/
neural_network_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
from torch import nn, optim
from torch.autograd import Variable
import numpy as np
from fetcher import *
#X_train, Y_train, X_test, Y_test = read_file_both_sides_old('AramDataSet38W.txt', 'ChampionList624.txt', 134)
X_train, Y_train, X_test, Y_test = read_file_both_sides('AramDataSet624.txt', 'ChampionList624.txt', 134)
# Hyper Parameters
input_size = 134*2
hidden_size = 1500
num_classes = 2
num_epochs = 100
batch_size = 256
learning_rate = 0.001
# Neural Network Model (1 hidden layer)
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc1.weight.data.normal_(0, 0.1)
self.sigmoid = nn.Sigmoid()
self.fc2 = nn.Linear(hidden_size, num_classes)
self.fc2.weight.data.normal_(0, 0.1)
self.softmax = nn.Softmax()
def forward(self, x):
out = self.fc1(x)
out = self.sigmoid(out)
out = self.fc2(out)
out = self.softmax(out)
return out
net = Net(input_size, hidden_size, num_classes)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
# 开始训练
for epoch in range(num_epochs):
for i in range(0, len(X_train), batch_size):
x_train = Variable(torch.FloatTensor(X_train[i:i+batch_size]))
y_train = Variable(torch.LongTensor(Y_train[i:i+batch_size].astype(np.int64)))
# forward
optimizer.zero_grad() # zero the gradient buffer
outputs = net(x_train)
loss = criterion(outputs, y_train)
loss.backward()
optimizer.step()
correct = 0
total = 0
for i in range(0, len(X_test), batch_size):
x_test = Variable(torch.FloatTensor(X_test[i:i+batch_size]))
y_test = torch.LongTensor(Y_test[i:i+batch_size].astype(np.int64))
outputs = net(x_test)
predicted = torch.max(outputs.data, 1)[1]
total += len(y_test)
correct += (predicted == y_test).sum()
print('Epoch[%d] : Accuracy of the network on the %d test cases: %f %%' % (epoch+1, total, 100 * correct / total))