-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfindiff_cure.py
73 lines (56 loc) · 1.79 KB
/
findiff_cure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
from cure import dcure, viscos, CtK, ramp_temp, press_loc
DEBUG = 0
L = 1 # length of the material
Nx = 10 # number of space steps
dx = L/Nx # space step
assert (Nx*dx == L)
# estimate the maximal diffusion for the stability condition
max_permeab = 7e-6
min_viscos = 0.6
maxD = max_permeab/min_viscos
T = 3600*2 # duration of the simulation
# dt = 0.1*(dx**2/(2*maxD)) # time step -- from stability condition
dt = 60
Nt = int(T/dt) # numer of time steps
# allocate the arrays for results
u = np.zeros((Nt,Nx))
du = np.zeros(Nx)
cure = np.zeros(Nt)
t = np.zeros(Nt)
# physical variables
g = 0 # gravitational acceleration -- is ignored
bc0 = 0 # boundary condition at point 0
cure[0] = 1e-3 # initial value of cure
permeab = 3.56e-06
# time loop
for j in range(0,Nt-1):
# boundary conditions...
u[j,0] = bc0 # ...at the bottom,...
u[j,Nx-1] = press_loc(j*dt) # ... and at the top
# numerical boundary conditions
du[0] = 2*(u[j,1] -2*u[j,0])/dx**2
du[Nx-1] = 0
# space loop
for i in range(1,Nx-1):
# finite difference for the space
du[i] = (u[j,i-1] - 2*u[j,i] + u[j,i+1])/(dx**2) - g
time = dt*j
t[j+1] = time
temp = CtK(ramp_temp(time))
u[j+1] = u[j] + dt*du*(permeab/viscos(temp,cure[j]))
cure[j+1] = cure[j] + dt*dcure(temp,cure[j])
##################################################
# print the results
X = np.arange(0, L, dx)
# headers
print('000',end="")
for x in X:
print('\t%.3f'% x, end="")
print()
# data
for time,line in zip(t,u):
print(time, end="")
for entry in line:
print("\t", entry, end="")
print()