Skip to content

This code is under construction and is based on NICE paper implementation

License

Notifications You must be signed in to change notification settings

tomhirsh/Denoising-drone-rotors

This branch is 47 commits ahead of LsNatan/NICE:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

0122b02 · May 24, 2019

History

51 Commits
May 24, 2019
May 24, 2019
Sep 27, 2018
May 11, 2019
May 11, 2019
May 24, 2019
Sep 27, 2018
May 8, 2019
May 24, 2019
May 24, 2019
Sep 27, 2018
Sep 27, 2018
May 24, 2019
Sep 27, 2018
May 24, 2019
May 11, 2019
Sep 27, 2018
Sep 27, 2018
Sep 27, 2018
Sep 27, 2018
Sep 27, 2018
Sep 27, 2018
May 11, 2019
Sep 27, 2018

Repository files navigation

NICE

This code implements NICE papper List of links to pre-trained models:

DeepISP

http://www.mediafire.com/file/15anb9x44nxkkke/best_checkpoint.pth.tar/file

ResNet18-CIFAR10

http://www.mediafire.com/file/legt0epbrw8qii3/model_best.pth.tar/file

ResNet18-ImageNet

http://www.mediafire.com/file/l5qbobd2mm5wry5/model_best.pth.tar/file

ResNet34-ImageNet

http://www.mediafire.com/file/et7mvajxamm8sup/model_best.pth.tar/file

ResNet50-ImageNet

http://www.mediafire.com/file/93f7s5h66d6n8z1/model_best.pth.tar/file

Running instructions


DeepISP

python3 deep_isp_main.py --batch_size=16 --resume= --quant=True --quant_bitwidth=4 --inject_noise=True --inject_act_noise=False --act_quant=True --act_bitwidth=8 --quant_epoch_step=6 --quant_start_stage=0 --epochs=500 --learning_rate=3e-5 --gpus 0 --set_gpu=True --stage_only_clamp=False

Params

  • --seed N - Random seed

  • --start-epoch N - manual epoch number (useful on restarts)

  • --epochs EPOCHS Number of epochs to train.

  • --batch_size BATCH_SIZE Number of epochs to train.

  • --num_denoise_layers NUM_DENOISE_LAYERS num of layers.

  • --learning_rate LEARNING_RATE,

  • -lr LEARNING_RATE The learning rate.

  • --decay DECAY

  • -d DECAY Weight decay (L2 penalty).

  • --gpus GPUS List of GPUs used for training - e.g 0,1,3. Remove to run on CPU

  • --datapath DATAPATH Path to MSR-Demosaicing dataset

  • --resume RESUME Path to checkpoint file

  • --out_dir OUT_DIR Path to save model and results

  • --quant_epoch_step QUANT_EPOCH_STEP quant_bitwidth.

  • --num_workers NUM_WORKERS Num of workers for data.

  • --quant_start_stage QUANT_START_STAGE Num of workers for data.

  • --inject_noise INJECT_NOISE use preproccesing for the grad

  • --show_test_result SHOW_TEST_RESULT show figures of test result

  • --quant QUANT use preproccesing for the grad

  • --quant_bitwidth QUANT_BITWIDTH quant_bitwidth.

  • --inject_act_noise INJECT_ACT_NOISE use preproccesing for the grad

  • --act_quant ACT_QUANT use preproccesing for the grad

  • --act_bitwidth ACT_BITWIDTH quant_bitwidth.

  • --step STEP amount of split the layer in quant.

  • --set_gpu SET_GPU - show figures of test result (False to run on CPU)

  • --adaptive_lr ADAPTIVE_LR show figures of test result

  • --enable_decay ENABLE_DECAY decay_enable

  • --weight_relu WEIGHT_RELU weight_relu

  • --weight_grad_after_quant WEIGHT_GRAD_AFTER_QUANT weight_grad_after_quant

  • --random_inject_noise RANDOM_INJECT_NOISE random_inject_noise

  • --stage_only_clamp STAGE_ONLY_CLAMP stage_only_clamp

  • --wrpn WRPN wrpn quantization

  • --copy_statistics COPY_STATISTICS copy_statistics

  • --quant_decay QUANT_DECAY quant decay.

  • --val_part VAL_PART quant decay.

ResNet18 CIFAR10

python3 main.py --model resnet --depth 18 --bitwidth --act-bitwidth --step 21 --gpus 0 --epochs 120 -b 256 --dataset cifar10 --start-from-zero --resume --learning_rate=0.01 --quant_start_stage=0 --quant_epoch_step=3 --datapath --schedule 300

ResNet18 ImageNet

python main.py --model resnet --depth 18 --bitwidth --act-bitwidth --step 21 --schedule 42 110 -lr 1e-4 --decay 4e-5 --gamma 0.93451921456 --gpus 0,1 --epochs 120 -b 128 --dataset imagenet --datapath --resume --quant_start_stage=0 --quant_epoch_step=2 --no-quant-edges --noise_mask 0.05 --act_stats_batch_size 64

ResNet34 ImageNet

python main.py --model resnet --depth 34 --bitwidth --act-bitwidth --step 37 --schedule 73 110 -lr 1e-4 --decay 4e-5 --gamma 0.88296999554 --gpus 0,1 --epochs 120 -b 128 --dataset imagenet --datapath --resume --quant_start_stage=0 --quant_epoch_step=2 --no-quant-edges --noise_mask 0.05 --act_stats_batch_size 64

ResNet50 ImageNet

python main.py --model resnet --depth 50 --bitwidth --act-bitwidth --step 37 --schedule 83 110 -lr 1e-4 --decay 4e-5 --gamma 0.843190929--gpus 0,1 --epochs 120 -b 128 --dataset imagenet --datapath --resume --quant_start_stage=0 --quant_epoch_step=1.5 --no-quant-edges --noise_mask 0.05 --act_stats_batch_size 64

About

This code is under construction and is based on NICE paper implementation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.5%
  • Python 2.5%