forked from tomasalex/aerosol
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
89 lines (66 loc) · 3.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import Aod
import Utils
import plots
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.cbook as cbook
import datetime
print('Hello :)')
print(os.path.dirname(os.path.abspath(__file__)))
plt.close('all')
AOD12=4
AOD01=3
AOD030=2
AODranges=[AOD030,AOD01,AOD12]
#AODranges=[AOD12]
for AODcol in AODranges:
AODrange_labels=['0-30km','0-1km','1-2km']
AODcat=AODranges.index(AODcol)
aodvalues, monthYears = Utils.load_data(AODranges[AODcat])
mn,stdv, mpn, stdvp,nan,zerovals =Utils.getStat(aodvalues)
print('Sample mean:', mn,'Sample std dev:', stdv)
print('Sample mean of AOD percentage of AOD 0-30:', mpn,'Sample std dev of AOD percentage of AOD 0-30:', stdvp)
print('Number of NaN values:', nan,'Number of zero values:', zerovals)
#exit()
allLats, allLongs = Utils.getLats(aodvalues)
allLats_s=allLats[:]
allLats.sort(reverse=True)
winter = [12, 1, 2]
spring = [3, 4, 5]
summer = [6, 7, 8]
autumn = [9, 10, 11]
year = list(range(1, 13))
#periods=[winter, spring, summer, autumn, year ]
periods=[winter, spring, summer, autumn, year]
#periods=[winter]
#periods=[year]
period_names=['Winter', 'Spring', 'Summer', 'Autumn', 'Year' ]
#period_names=['Year' ]
for period in periods:
pnum=periods.index(period)
meanAODperDegree = Utils.GetPeriodData_v2(period, aodvalues, allLats, allLongs,False,uprof=15)
slopeAODperDegree, intercAODdegree, alldeseasondata=Utils.GetDeseasonalizedData(period, aodvalues, allLats, allLongs, monthYears,
meanAODperDegree, False, uprof=15)
# plots.plot_regline(alldeseasondata[5][5], allLats[5], allLongs[5], slopeAODperDegree[5][5], intercAODdegree[5][5],
# monthYears, period,period_names[pnum],AODrange_labels[AODcat],True, aodvalues)
# plots.plot_data(np.flipud(meanAODperDegree), np.asarray(map(float,allLongs)),np.asarray(map(float, allLats_s)),
# period_names[pnum],AODrange_labels[AODcat],"Mean",'jet',minv=0,maxv=0.10,folder="./graphsfix/")
# plots.plot_data(np.flipud(slopeAODperDegree), np.asarray(map(float,allLongs)),np.asarray(map(float, allLats_s)),
# period_names[pnum],AODrange_labels[AODcat],"Slope",'gnuplot',minv=-7,maxv=7,folder="./graphsfix/")
plots.plot_regline(alldeseasondata[5][5], allLats[5], allLongs[5], slopeAODperDegree[5][5], intercAODdegree[5][5],
monthYears, period,period_names[pnum],AODrange_labels[AODcat],True, aodvalues,folder="./graphsprof15/")
plots.plot_data(np.flipud(meanAODperDegree), np.asarray(map(float,allLongs)),np.asarray(map(float, allLats_s)),
period_names[pnum],AODrange_labels[AODcat],"Mean",'jet',folder="./graphsprof15/")
plots.plot_data(np.flipud(slopeAODperDegree), np.asarray(map(float,allLongs)),np.asarray(map(float, allLats_s)),
period_names[pnum],AODrange_labels[AODcat],"Slope",'gnuplot',folder="./graphsprof15/")
plt.show()
# plt.figure(2)
# x, y, AodToDouble = Utils.aodPerMonthGraph(aodvalues)
# plots.perMonth(x, y)
#
# plt.figure(3)
# x, y = Utils.aodDeseasonalisation(aodvalues, AodToDouble)
# plots.perMonth(x, y)
# plt.show()