forked from OpenGVLab/InternImage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
upernet_internimage_s_512_160k_ade20k.py
66 lines (66 loc) · 2.55 KB
/
upernet_internimage_s_512_160k_ade20k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# --------------------------------------------------------
# InternImage
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
_base_ = [
'../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
pretrained = 'https://github.com/OpenGVLab/InternImage/releases/download/cls_model/internimage_s_1k_224.pth'
model = dict(
backbone=dict(
_delete_=True,
type='InternImage',
core_op='DCNv3',
channels=80,
depths=[4, 4, 21, 4],
groups=[5, 10, 20, 40],
mlp_ratio=4.,
drop_path_rate=0.3,
norm_layer='LN',
layer_scale=1.0,
offset_scale=1.0,
post_norm=True,
with_cp=False,
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
decode_head=dict(num_classes=150, in_channels=[80, 160, 320, 640]),
auxiliary_head=dict(num_classes=150, in_channels=320),
test_cfg=dict(mode='whole')
)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='ResizeToMultiple', size_divisor=32),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
optimizer = dict(
_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.05,
constructor='CustomLayerDecayOptimizerConstructor',
paramwise_cfg=dict(num_layers=33, layer_decay_rate=1.0,
depths=[4, 4, 21, 4]))
lr_config = dict(_delete_=True, policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0, min_lr=0.0, by_epoch=False)
# By default, models are trained on 8 GPUs with 2 images per GPU
data=dict(samples_per_gpu=2,
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
runner = dict(type='IterBasedRunner')
checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=1)
evaluation = dict(interval=16000, metric='mIoU', save_best='mIoU')
# fp16 = dict(loss_scale=dict(init_scale=512))