-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProjectEulerAnswers.py
962 lines (786 loc) · 31 KB
/
ProjectEulerAnswers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
"""
Module that contains functions that solve Project Euler propblems.
"""
# The import of print_function can be removed if running on Python 2.4.
from __future__ import print_function # Python 2.6 or 2.7 required
from functools import reduce # For Python 3.x compatibility.
from sys import version_info
import time
if version_info >= (3, 0): # For Python 3.x compatibility.
xrange = range
def sum_of_divs(num):
if num == 1:
return 0
t = 1
if num % 2 != 0:
initial = 3
step = 2
else:
initial = 2
step = 1
if int(num ** 0.5) ** 2 == num:
t += int(num ** 0.5)
end = int(num ** 0.5)
else:
end = int(num ** 0.5) + 1
for i in xrange(initial, end, step):
if num % i == 0:
t += i + num / i
return t
def prob1(limit=1000):
"""
If we list all the natural numbers below 10 that are multiples of 3 or 5,
we get 3, 5, 6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000.
"""
a = 0
for i in range(1, limit):
if i % 3 == 0 or i % 5 == 0:
a += i
return a
def prob2(limit=4000000):
"""
Each new term in the Fibonacci sequence is generated by adding the previous
two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not
exceed four million, find the sum of the even-valued terms.
"""
a = 0
n1 = 1
n2 = 2
while True:
t = n1 + n2
n1 = n2
n2 = t
if n2 > limit:
break
if n2 % 2 == 0:
a += n2
return a + 2
def prob3(num=600851475143):
"""
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143 ?
"""
a = []
b = 1
i = 3
while True:
if b == num:
break
elif num % i == 0:
b *= i
a.append(i)
i += 1
return max(a)
def prob4(dig=3):
"""
A palindromic number reads the same both ways. The largest palindrome made
from the product of two 2-digit numbers is 9009 = 91 * 99.
Find the largest palindrome made from the product of two 3-digit numbers.
"""
limit = 10 ** dig - 1
a = []
for i in range(limit, 0, -1):
for j in range(limit, i - 1, -1):
prod = str(i * j)
#if len(prod) % 2 == 0:
half = len(prod) // 2
palin = [0] * half
for k in range(half):
if prod[k] == prod[-k - 1]:
palin[k] = 1
#print range(half), prod, k, k-1
#print palin
if 0 not in palin:
a.append(int(prod))
return max(a)
def prob5(limit=20):
"""
2520 is the smallest number that can be divided by each of the numbers from
1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible by all of the
numbers from 1 to 20?
"""
a = 2
for i in range(2, limit + 1):
if a % i != 0:
if i % (a % i) != 0:
a *= i
else:
a *= i / (a % i)
return a
def prob6(limit=100):
"""
The sum of the squares of the first ten natural numbers is,
1**2 + 2**2 + ... + 10**2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)**2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten
natural numbers and the square of the sum is 3025 - 385 = 2640.
Find the difference between the sum of the squares of the first one hundred
natural numbers and the square of the sum.
"""
a = 0
b = 0
for i in range(1, limit + 1):
a += i ** 2
b += i
return b ** 2 - a
def prob7(num=10001):
"""
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see
that the 6th prime is 13.
What is the 10001st prime number?
"""
a = 2 # Number to test for primality
#ith = 1 # Ordinality of prime
primes = []
add = 4
while len(primes) < num:
#print a
if a == 2:
primes.append(a)
a += 1
continue
elif a == 3:
primes.append(a)
a += 2
continue
else:
if add == 4:
add = 2
else:
add = 4
for i in primes:
#print add
if a % i == 0:
a += add
break
elif i > a ** 0.5: # If no factors below a's root then prime
primes.append(a)
a += add
break
return primes[-1]
def prob8(consec=5):
"""
Find the greatest product of five consecutive digits from the 1000-digit
number below.
"""
num = ('73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450')
i = 0
biggest = 0
while i + consec <= len(num):
digits = num[i:i + consec]
#print digits
temp = int(reduce(lambda x, y: int(x) * int(y), digits))
#print a2
if temp > biggest:
biggest = temp
i += 1
return biggest
def prob9(total=1000):
"""
A Pythagorean triplet is a set of three natural numbers, a < b < c, for
which, a**2 + b**2 = c**2
For example, 3**2 + 4**2 = 9 + 16 = 25 = 5**2.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
"""
a = 1
while True:
for i in range(2, total):
b = i
c = total - a - b
if a ** 2 + b ** 2 == c ** 2:
return a * b * c
a += 1
def prob10(limit=2000000):
"""
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.
"""
#a = 2 # Number to test for primality
#primes = []
#add = 4
#
#while a < limit:
# #print a
# if a == 2:
# primes.append(a)
# a += 1
# continue
# elif a == 3:
# primes.append(a)
# a += 2
# continue
# else:
# if add == 4:
# add = 2
# else:
# add = 4
# for i in primes:
# #print add
# if a % i == 0:
# a += add
# break
# elif i > a**0.5: # If no factors below a's root then prime
# primes.append(a)
# a += add
# break
#return reduce(lambda x,y: x+y, primes)
sieve = list(range(limit))
#print sieve
sieve[1] = 0
for n in xrange(4, limit, 2):
sieve[n] = 0
for n in xrange(3, int(limit ** 0.5), 2):
if sieve[n]:
for m in xrange(n ** 2, limit, 2 * n):
sieve[m] = 0
return sum(sieve)
def prob11(num=4):
"""
In the 20*20 grid below, four numbers along a diagonal line have been
marked in red.
The product of these numbers is 26 * 63 * 78 * 14 = 1788696.
What is the greatest product of four adjacent numbers in any direction
(down, right, or diagonally) in the 20*20 grid?
"""
grid = ['08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08',
'49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00',
'81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65',
'52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91',
'22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80',
'24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50',
'32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70',
'67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21',
'24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72',
'21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95',
'78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92',
'16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57',
'86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58',
'19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40',
'04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66',
'88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69',
'04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36',
'20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16',
'20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54',
'01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48']
for i, row in enumerate(grid):
#grid[i] = grid[i].split()
#grid[i] = map(lambda x: int(x), grid[i])
grid[i] = [int(x) for x in row.split()]
#print grid[18][19]
biggest = 0
i = 0
#print range(20-num)
# Verticle
for r in range(20 - num + 1):
for c in range(20):
prod = 1
for i in range(num):
prod *= grid[r + i][c]
if prod > biggest:
biggest = prod
# Horizontal
for r in range(20):
for c in range(20 - num + 1):
prod = 1
for i in range(num):
prod *= grid[r][c + i]
if prod > biggest:
biggest = prod
# Left Diagonal
for r in range(20 - num + 1):
for c in range(20 - num + 1):
prod = 1
for i in range(num):
prod *= grid[r + i][c + i]
if prod > biggest:
biggest = prod
# Right Diagonal
for r in range(20 - num + 1):
for c in range(num - 1, 20):
prod = 1
for i in range(num):
prod *= grid[r + i][c - i]
if prod > biggest:
biggest = prod
return biggest
def prob12(limit=500):
"""The sequence of triangle numbers is generated by adding the natural
numbers. So the 7th triangle number would be
1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred
divisors?
"""
tri = 0 # triangle number
add = 0
divs = 0
while divs <= limit:
#print
divs = 0
add += 1
tri += add
# each divisor below rt has one above
for i in range(1, int(tri ** 0.5) + 1):
if tri % i == 0:
divs += 2
if tri == (int(tri ** 0.5) ** 2): # if perfect square only one divisor
divs -= 1 # so correct
#print 'divs', divs
#print tri
return tri
def prob13():
"""
Work out the first ten digits of the sum of the following one-hundred
50-digit numbers.
"""
nums = [37107287533902102798797998220837590246510135740250,
46376937677490009712648124896970078050417018260538,
74324986199524741059474233309513058123726617309629,
91942213363574161572522430563301811072406154908250,
23067588207539346171171980310421047513778063246676,
89261670696623633820136378418383684178734361726757,
28112879812849979408065481931592621691275889832738,
44274228917432520321923589422876796487670272189318,
47451445736001306439091167216856844588711603153276,
70386486105843025439939619828917593665686757934951,
62176457141856560629502157223196586755079324193331,
64906352462741904929101432445813822663347944758178,
92575867718337217661963751590579239728245598838407,
58203565325359399008402633568948830189458628227828,
80181199384826282014278194139940567587151170094390,
35398664372827112653829987240784473053190104293586,
86515506006295864861532075273371959191420517255829,
71693888707715466499115593487603532921714970056938,
54370070576826684624621495650076471787294438377604,
53282654108756828443191190634694037855217779295145,
36123272525000296071075082563815656710885258350721,
45876576172410976447339110607218265236877223636045,
17423706905851860660448207621209813287860733969412,
81142660418086830619328460811191061556940512689692,
51934325451728388641918047049293215058642563049483,
62467221648435076201727918039944693004732956340691,
15732444386908125794514089057706229429197107928209,
55037687525678773091862540744969844508330393682126,
18336384825330154686196124348767681297534375946515,
80386287592878490201521685554828717201219257766954,
78182833757993103614740356856449095527097864797581,
16726320100436897842553539920931837441497806860984,
48403098129077791799088218795327364475675590848030,
87086987551392711854517078544161852424320693150332,
59959406895756536782107074926966537676326235447210,
69793950679652694742597709739166693763042633987085,
41052684708299085211399427365734116182760315001271,
65378607361501080857009149939512557028198746004375,
35829035317434717326932123578154982629742552737307,
94953759765105305946966067683156574377167401875275,
88902802571733229619176668713819931811048770190271,
25267680276078003013678680992525463401061632866526,
36270218540497705585629946580636237993140746255962,
24074486908231174977792365466257246923322810917141,
91430288197103288597806669760892938638285025333403,
34413065578016127815921815005561868836468420090470,
23053081172816430487623791969842487255036638784583,
11487696932154902810424020138335124462181441773470,
63783299490636259666498587618221225225512486764533,
67720186971698544312419572409913959008952310058822,
95548255300263520781532296796249481641953868218774,
76085327132285723110424803456124867697064507995236,
37774242535411291684276865538926205024910326572967,
23701913275725675285653248258265463092207058596522,
29798860272258331913126375147341994889534765745501,
18495701454879288984856827726077713721403798879715,
38298203783031473527721580348144513491373226651381,
34829543829199918180278916522431027392251122869539,
40957953066405232632538044100059654939159879593635,
29746152185502371307642255121183693803580388584903,
41698116222072977186158236678424689157993532961922,
62467957194401269043877107275048102390895523597457,
23189706772547915061505504953922979530901129967519,
86188088225875314529584099251203829009407770775672,
11306739708304724483816533873502340845647058077308,
82959174767140363198008187129011875491310547126581,
97623331044818386269515456334926366572897563400500,
42846280183517070527831839425882145521227251250327,
55121603546981200581762165212827652751691296897789,
32238195734329339946437501907836945765883352399886,
75506164965184775180738168837861091527357929701337,
62177842752192623401942399639168044983993173312731,
32924185707147349566916674687634660915035914677504,
99518671430235219628894890102423325116913619626622,
73267460800591547471830798392868535206946944540724,
76841822524674417161514036427982273348055556214818,
97142617910342598647204516893989422179826088076852,
87783646182799346313767754307809363333018982642090,
10848802521674670883215120185883543223812876952786,
71329612474782464538636993009049310363619763878039,
62184073572399794223406235393808339651327408011116,
66627891981488087797941876876144230030984490851411,
60661826293682836764744779239180335110989069790714,
85786944089552990653640447425576083659976645795096,
66024396409905389607120198219976047599490197230297,
64913982680032973156037120041377903785566085089252,
16730939319872750275468906903707539413042652315011,
94809377245048795150954100921645863754710598436791,
78639167021187492431995700641917969777599028300699,
15368713711936614952811305876380278410754449733078,
40789923115535562561142322423255033685442488917353,
44889911501440648020369068063960672322193204149535,
41503128880339536053299340368006977710650566631954,
81234880673210146739058568557934581403627822703280,
82616570773948327592232845941706525094512325230608,
22918802058777319719839450180888072429661980811197,
77158542502016545090413245809786882778948721859617,
72107838435069186155435662884062257473692284509516,
20849603980134001723930671666823555245252804609722,
53503534226472524250874054075591789781264330331690]
return str(reduce(lambda x, y: x + y, nums))[0:10]
def prob14(limit=1000000):
"""
The following iterative sequence is defined for the set of positive
integers:
n -> n/2 (n is even)
n -> 3n + 1 (n is odd)
Using the rule above and starting with 13, we generate the following
sequence:
13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1
It can be seen that this sequence (starting at 13 and finishing at 1)
contains 10 terms. Although it has not been proved yet (Collatz Problem),
it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
"""
dic = {}
for i in range(1, limit):
num = i
count = 1
while True:
if num == 1:
dic[i] = count
break
elif num in dic:
# if the count for num is already in dic, add that
dic[i] = count + dic[num]
break
elif num % 2 == 0:
num /= 2
else:
num = 3 * num + 1
count += 1
#print dic
if version_info >= (2, 5):
return max(dic, key=dic.get)
else: # Python 2.4 compatible
chain = max(dic.values())
for key in dic:
if dic[key] == chain:
return key
def prob15(size=20):
"""
Starting in the top left corner of a 2*2 grid, there are 6 routes (without
backtracking) to the bottom right corner.
How many routes are there through a 20*20 grid?
"""
a = 1
for i in range(1, size + 1):
#print a
a = a * (size + i) / i
return a
def prob16(power=1000):
"""
2**15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2**1000?
"""
prod = list(str(2 ** power))
return reduce(lambda x, y: int(x) + int(y), prod)
def prob17(limit=1000):
"""
If the numbers 1 to 5 are written out in words: one, two, three, four,
five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.
If all the numbers from 1 to 1000 (one thousand) inclusive were written out
in words, how many letters would be used?
NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and
forty-two) contains 23 letters and 115 (one hundred and fifteen) contains
20 letters. The use of "and" when writing out numbers is in compliance with
British usage.
"""
digits = {1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five',
6: 'six', 7: 'seven', 8: 'eight', 9: 'nine'}
exceptions = {10: 'ten', 11: 'eleven', 12: 'twelve', 14: 'fourteen'}
bases = {2: 'twen', 3: 'thir', 4: 'for', 5: 'fif',
6: 'six', 7: 'seven', 8: 'eigh', 9: 'nine'}
powers = {1: 'teen', 10: 'ty', 100: 'hundred', 1000: 'thousand'}
count = 0
for num in range(1, limit + 1):
right = str(num)[-2:]
#print right
if int(right) == 0:
pass
elif int(right) in exceptions:
count += len(exceptions[int(right)])
elif 10 < int(right) < 20:
count += len(bases[int(right[1])]) + len(powers[1])
else:
if right[-1] != '0':
count += len(digits[int(right[-1])])
if len(right) == 2 and right[0] != '0':
count += len(bases[int(right[0])]) + len(powers[10])
if len(str(num)) > 2:
left = str(num)[:-2]
#print left
if right != '00':
count += 3
if left[-1] != '0':
count += len(digits[int(left[-1])]) + len(powers[100])
if len(left) == 2 and left[0] != '0':
count += len(digits[int(left[0])]) + len(powers[1000])
return count
def prob18(triangle='triangle2.txt'):
"""
By starting at the top of the triangle below and moving to adjacent numbers
on the row below, the maximum total from top to bottom is 23.
triangle1.txt
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
triangle2.txt
NOTE: As there are only 16384 routes, it is possible to solve this problem
by trying every route. However, Problem 67, is the same challenge with a
triangle containing one-hundred rows; it cannot be solved by brute force,
and requires a clever method! ;o)
"""
a = open(triangle)
tri = []
i = 0
for line in a:
tri.append([int(x) for x in line.split()])
i += 1
a.close()
for row in reversed(range(len(tri) - 1)):
for i in range(len(tri[row])):
#print tri
if tri[row + 1][i] > tri[row + 1][i + 1]:
tri[row][i] += tri[row + 1][i]
else:
tri[row][i] += tri[row + 1][i + 1]
return tri[0][0]
def prob19():
"""
You are given the following information, but you may prefer to do some
research for yourself.
1 Jan 1900 was a Monday.
Thirty days has September,
April, June and November.
All the rest have thirty-one,
Saving February alone,
Which has twenty-eight, rain or shine.
And on leap years, twenty-nine.
A leap year occurs on any year evenly divisible by 4, but not on a century
unless it is divisible by 400.
How many Sundays fell on the first of the month during the twentieth
century (1 Jan 1901 to 31 Dec 2000)?
"""
d_in_m = {1: 31, 3: 31, 4: 30, 5: 31, 6: 30, 7: 31,
8: 31, 9: 30, 10: 31, 11: 30, 12: 31}
count = 0
d_in_w = -1 # Day in week with Mon = 0
day = 0 # Starting Monday 1900-01-01
for yr in xrange(1900, 2001):
for mn in xrange(1, 13):
#print "{0}-{1:02}".format(yr, mn)
if (day - d_in_w) % 7 == 0:
#print "Day!"
if yr != 1900:
count += 1
if mn == 2: # February calculation
if yr % 4 == 0 and (yr % 100 != 0 or yr % 400 == 0):
day += 29
else:
day += 28
else:
day += d_in_m[mn]
#print day
return count
def prob20(num=100):
"""
n! means n * (n - 1) * ... * 3 * 2 * 1
For example, 10! = 10 * 9 * ... * 3 * 2 * 1 = 3628800, and the sum of the
digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
Find the sum of the digits in the number 100!
"""
fact = reduce(lambda x, y: int(x) * int(y), range(1, num + 1))
return reduce(lambda x, y: int(x) + int(y), list(str(fact)))
def prob21(limit=10000):
"""
Let d(n) be defined as the sum of proper divisors of n (numbers less than n
which divide evenly into n).
If d(a) = b and d(b) = a, where a != b, then a and b are an amicable pair
and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44,
55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4,
71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
"""
total = 0
for a in xrange(2, limit):
sum_a = sum_of_divs(a)
b = sum_a
if b > a:
sum_b = sum_of_divs(sum_a)
if a == sum_b and a != b:
#print a, b
total += a + b
return total
def prob22(f='names.txt'):
"""
Using names.txt, a 46K text file containing over five-thousand first names,
begin by sorting it into alphabetical order. Then working out the
alphabetical value for each name, multiply this value by its alphabetical
position in the list to obtain a name score.
For example, when the list is sorted into alphabetical order, COLIN, which
is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list.
So,COLIN would obtain a score of 938 * 53 = 49714.
What is the total of all the name scores in the file?
"""
namefile = open(f)
names = namefile.readlines()[0].split('","')
namefile.close()
names[0] = names[0].strip('"')
names[-1] = names[-1].strip('"')
names.sort()
#print range(ord('A'), ord('Z') + 1)
#ab = map(chr, range(ord('A'), ord('Z') + 1))
#print ab
ab = [chr(x) for x in range(ord('A'), ord('Z') + 1)]
ab = dict(zip(ab, range(1, 27)))
index = 0
ans = 0
for name in names:
index += 1
name_t = 0
for l in name:
name_t += ab[l]
ans += name_t * index
return ans
def prob23(limit=28123):
"""
A perfect number is a number for which the sum of its proper divisors is
exactly equal to the number. For example, the sum of the proper divisors of
28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect
number.
A number n is called deficient if the sum of its proper divisors is less
than n and it is called abundant if this sum exceeds n.
As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest
number that can be written as the sum of two abundant numbers is 24. By
mathematical analysis, it can be shown that all integers greater than 28123
can be written as the sum of two abundant numbers. However, this upper
limit cannot be reduced any further by analysis even though it is known
that the greatest number that cannot be expressed as the sum of two
abundant numbers is less than this limit.
Find the sum of all the positive integers which cannot be written as the
sum of two abundant numbers.
"""
abuns = []
for i in xrange(12, limit - 12 + 1):
if sum_of_divs(i) > i:
abuns.append(i)
#print len(abuns)
tests = list(range(limit + 1))
for i in xrange(len(abuns)):
j = i
try:
while j < len(abuns) and abuns[i] + abuns[j] < len(tests):
tests[abuns[i] + abuns[j]] = 0
j += 1
except IndexError:
print(i, j)
print(abuns[i] + abuns[j])
raise
# print(tests)
return sum(tests)
def prob67(triangle='triangle3.txt'):
"""
By starting at the top of the triangle below and moving to adjacent numbers
on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom in triangle.txt (right click and
'Save Link/Target As...'), a 15K text file containing a triangle with
one-hundred rows.
NOTE: This is a much more difficult version of Problem 18. It is not
possible to try every route to solve this problem, as there are 299
altogether! If you could check one trillion (1012) routes every second it
would take over twenty billion years to check them all. There is an
efficient algorithm to solve it. ;o)
"""
return prob18(triangle)
if __name__ == '__main__':
# Flag for whether all problems will be timed
time_all = True
prob = 22
value = None
if time_all:
if version_info >= (2, 7):
print("{:7} {:8} {}".format('Problem', 'Time (s)', 'Solution'))
elif version_info == (2, 6): # Python 2.6 requires field names
print("{0:7} {1:8} {2}".format('Problem', 'Time (s)', 'Solution'))
else: # Python 2.4 compatible
print("%7s %8s %s" % ('Problem', 'Time (s)', 'Solution'))
for problem in range(1, 24):
start = time.clock()
solution = globals()['prob' + str(problem)]()
stop = time.clock()
elapsed = stop - start
if version_info >= (2, 7):
print("{:7} {:8.3f} {}".format(problem, elapsed, solution))
elif version_info == (2, 6): # Python 2.6 requires field names
print("{0:7} {1:8.3f} {2}".format(problem, elapsed, solution))
else: # Python 2.4 compatible
print("%7i %8.3f %s" % (problem, elapsed, solution))
elif not time_all:
start = time.clock()
if value is None:
solution = globals()['prob' + str(prob)]()
else:
solution = globals()['prob' + str(prob)](value)
stop = time.clock()
elapsed = stop - start
print("Problem:", prob)
print("Solution:", solution)
print("Time to find solution: %.3f s" % elapsed)
print()