This repository has been archived by the owner on Aug 19, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
fourier.cc
306 lines (232 loc) · 9.32 KB
/
fourier.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// Example : display magnitude image of DFT of input image
// usage: prog {<image_name> | <video_name>}
// Author : Toby Breckon, [email protected]
// Copyright (c) 2007 School of Engineering, Cranfield University
// License : LGPL - http://www.gnu.org/licenses/lgpl.html
// portions based on OpenCV library example dft.c
#include "cv.h" // open cv general include file
#include "highgui.h" // open cv GUI include file
#include <stdio.h>
#include <algorithm> // contains max() function (amongst others)
using namespace cv; // use c++ namespace so the timing stuff works consistently
/******************************************************************************/
// Rearrange the quadrants of Fourier image so that the origin is at
// the image center
// src & dst arrays of equal size & type
void cvShiftDFT(CvArr * src_arr, CvArr * dst_arr );
/******************************************************************************/
// setup the camera index / file capture properly based on OS platform
// 0 in linux gives first camera for v4l
//-1 in windows gives first device or user dialog selection
#ifdef linux
#define CAMERA_INDEX 0
#define VIDEOCAPTURE cvCaptureFromFile
#else
#define CAMERA_INDEX -1
#define VIDEOCAPTURE cvCaptureFromAVI
#endif
/******************************************************************************/
int main( int argc, char** argv )
{
IplImage* img = NULL; // image object
CvCapture* capture = NULL; // capture object
char const * originalName = "Original Image (grayscale)"; // window name
char const * magnitudeName = "Magnitude Image (log transformed)"; // window name
bool keepProcessing = true; // loop control flag
char key; // user input
int EVENT_LOOP_DELAY = 40; // delay for GUI window
// 40 ms equates to 1000ms/25fps = 40ms per frame
// if command line arguments are provided try to read image/video_name
// otherwise default to capture from attached H/W camera
if(
( argc == 2 && (img = cvLoadImage( argv[1], CV_LOAD_IMAGE_UNCHANGED)) != 0 ) ||
( argc == 2 && (capture = VIDEOCAPTURE( argv[1] )) != 0 ) ||
( argc != 2 && (capture = cvCreateCameraCapture( 0 )) != 0 )
)
{
// create window objects (use flag=0 to allow resize, 1 to auto fix size)
cvNamedWindow(originalName, 0);
cvNamedWindow(magnitudeName, 0);
// define required floating point images for DFT processing
// (if using a capture object we need to get a frame first to get the size)
if (capture) {
// cvQueryFrame s just a combination of cvGrabFrame
// and cvRetrieveFrame in one call.
img = cvQueryFrame(capture);
if(!img){
if (argc == 2){
printf("End of video file reached\n");
} else {
printf("ERROR: cannot get next fram from camera\n");
}
exit(0);
}
}
IplImage* realInput = cvCreateImage( cvGetSize(img), IPL_DEPTH_64F, 1);
IplImage* imaginaryInput = cvCreateImage( cvGetSize(img), IPL_DEPTH_64F, 1);
IplImage* complexInput = cvCreateImage( cvGetSize(img), IPL_DEPTH_64F, 2);
int dft_M = cvGetOptimalDFTSize( img->height - 1 );
int dft_N = cvGetOptimalDFTSize( img->width - 1 );
CvMat* dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 );
CvMat tmp;
double m, M;
IplImage* image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
IplImage* image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
// define grayscale image
IplImage* grayImg =
cvCreateImage(cvSize(img->width,img->height), img->depth, 1);
grayImg->origin = img->origin;
// start main loop
while (keepProcessing) {
int64 timeStart = getTickCount(); // get time at start of loop
// if capture object in use (i.e. video/camera)
// get image from capture object
if (capture) {
// cvQueryFrame s just a combination of cvGrabFrame
// and cvRetrieveFrame in one call.
img = cvQueryFrame(capture);
if(!img){
if (argc == 2){
printf("End of video file reached\n");
} else {
printf("ERROR: cannot get next fram from camera\n");
}
exit(0);
}
} else {
// if not a capture object set event delay to zero so it waits
// indefinitely (as single image file, no need to loop)
EVENT_LOOP_DELAY = 0;
}
// *** Fourier processing
// if input is not already grayscale, convert to grayscale
if (img->nChannels > 1){
cvCvtColor(img, grayImg, CV_BGR2GRAY);
} else {
grayImg = img;
}
cvScale(grayImg, realInput, 1.0, 0.0);
cvZero(imaginaryInput);
cvMerge(realInput, imaginaryInput, NULL, NULL, complexInput);
// copy A to dft_A and pad dft_A with zeros
cvGetSubRect( dft_A, &tmp, cvRect(0,0, grayImg->width,grayImg->height));
cvCopy( complexInput, &tmp, NULL );
cvGetSubRect( dft_A, &tmp, cvRect(img->width,0, dft_A->cols - grayImg->width, grayImg->height));
if ((dft_A->cols - grayImg->width) > 0)
{
cvZero( &tmp );
}
// no need to pad bottom part of dft_A with zeros because of
// use nonzero_rows parameter in cvDFT() call below
cvDFT( dft_A, dft_A, CV_DXT_FORWARD, complexInput->height );
// Split Fourier in real and imaginary parts
cvSplit( dft_A, image_Re, image_Im, 0, 0 );
// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
cvPow( image_Re, image_Re, 2.0);
cvPow( image_Im, image_Im, 2.0);
cvAdd( image_Re, image_Im, image_Re, NULL);
cvPow( image_Re, image_Re, 0.5 );
// Compute log(1 + Mag)
cvAddS( image_Re, cvScalarAll(1.0), image_Re, NULL ); // 1 + Mag
cvLog( image_Re, image_Re ); // log(1 + Mag)
// Rearrange the quadrants of Fourier image so that the origin is at
// the image center
cvShiftDFT( image_Re, image_Re );
// scale image for display
cvMinMaxLoc(image_Re, &m, &M, NULL, NULL, NULL);
cvScale(image_Re, image_Re, 1.0/(M-m), 1.0*(-m)/(M-m));
// ***
// display image in window
cvShowImage( originalName, grayImg );
cvShowImage( magnitudeName, image_Re );
// start event processing loop (very important,in fact essential for GUI)
// 4 ms roughly equates to 100ms/25fps = 4ms per frame
// here we take account of processing time for the loop by subtracting the time
// taken in ms. from this (1000ms/25fps = 40ms per frame) value whilst ensuring
// we get a +ve wait time
key = cvWaitKey((int) std::max(2.0, EVENT_LOOP_DELAY -
(((getTickCount() - timeStart) / getTickFrequency()) * 1000)));
if (key == 'x'){
// if user presses "x" then exit
printf("Keyboard exit requested : exiting now - bye!\n");
keepProcessing = false;
}
}
// destroy window objects
// (triggered by event loop *only* window is closed)
cvDestroyAllWindows();
// destroy image object (if it does not originate from a capture object)
if (!capture){
cvReleaseImage( &img );
}
// release other images
cvReleaseMat( &dft_A);
if (grayImg) {cvReleaseImage( &grayImg );}
cvReleaseImage( &realInput );
cvReleaseImage( &imaginaryInput );
cvReleaseImage( &complexInput );
cvReleaseImage( &image_Re );
cvReleaseImage( &image_Im );
// all OK : main returns 0
return 0;
}
// not OK : main returns -1
return -1;
}
/******************************************************************************/
// Rearrange the quadrants of Fourier image so that the origin is at
// the image center
// src & dst arrays of equal size & type
void cvShiftDFT(CvArr * src_arr, CvArr * dst_arr )
{
CvMat * tmp = NULL;
CvMat q1stub, q2stub;
CvMat q3stub, q4stub;
CvMat d1stub, d2stub;
CvMat d3stub, d4stub;
CvMat * q1, * q2, * q3, * q4;
CvMat * d1, * d2, * d3, * d4;
CvSize size = cvGetSize(src_arr);
CvSize dst_size = cvGetSize(dst_arr);
int cx, cy;
if(dst_size.width != size.width ||
dst_size.height != size.height){
cvError( CV_StsUnmatchedSizes,
"cvShiftDFT", "Source and Destination arrays must have equal sizes",
__FILE__, __LINE__ );
}
if(src_arr==dst_arr){
tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr));
}
cx = size.width/2;
cy = size.height/2; // image center
q1 = cvGetSubRect( src_arr, &q1stub, cvRect(0,0,cx, cy) );
q2 = cvGetSubRect( src_arr, &q2stub, cvRect(cx,0,cx,cy) );
q3 = cvGetSubRect( src_arr, &q3stub, cvRect(cx,cy,cx,cy) );
q4 = cvGetSubRect( src_arr, &q4stub, cvRect(0,cy,cx,cy) );
d1 = cvGetSubRect( src_arr, &d1stub, cvRect(0,0,cx,cy) );
d2 = cvGetSubRect( src_arr, &d2stub, cvRect(cx,0,cx,cy) );
d3 = cvGetSubRect( src_arr, &d3stub, cvRect(cx,cy,cx,cy) );
d4 = cvGetSubRect( src_arr, &d4stub, cvRect(0,cy,cx,cy) );
if(src_arr!=dst_arr){
if( !CV_ARE_TYPES_EQ( q1, d1 )){
cvError( CV_StsUnmatchedFormats,
"cvShiftDFT", "Source and Destination arrays must have the same format",
__FILE__, __LINE__ );
}
cvCopy(q3, d1, 0);
cvCopy(q4, d2, 0);
cvCopy(q1, d3, 0);
cvCopy(q2, d4, 0);
}
else{
cvCopy(q3, tmp, 0);
cvCopy(q1, q3, 0);
cvCopy(tmp, q1, 0);
cvCopy(q4, tmp, 0);
cvCopy(q2, q4, 0);
cvCopy(tmp, q2, 0);
cvReleaseMat(&tmp);
}
}
/******************************************************************************/