-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatamodule.py
219 lines (193 loc) · 8.45 KB
/
datamodule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import glob
import numpy as np
from typing import Callable, Optional, Sequence
from argparse import ArgumentParser
import monai
from monai.data import Dataset, DataLoader
from monai.data import list_data_collate, decollate_batch
from monai.utils import first, set_determinism, get_seed, MAX_SEED
from monai.transforms import (
# apply_transform, ensure_channel_first=True,
# AddChanneld,
Compose,
OneOf,
HistogramNormalized,
LoadImaged,
Spacingd,
Lambdad,
Orientationd,
DivisiblePadd,
RandFlipd,
RandZoomd,
RandScaleCropd,
CropForegroundd,
RandAffined,
Resized,
Rotate90d,
ScaleIntensityd,
ScaleIntensityRanged,
ToTensord,
)
from pytorch_lightning import LightningDataModule
class UnpairedDataset(Dataset, monai.transforms.Randomizable):
def __init__(
self,
keys: Sequence,
data: Sequence,
transform: Optional[Callable] = None,
length: Optional[Callable] = None,
batch_size: int = 32,
) -> None:
self.keys = keys
self.data = data
self.length = length
self.batch_size = batch_size
self.transform = transform
def __len__(self) -> int:
if self.length is None:
return min((len(dataset) for dataset in self.data))
else:
return self.length
def _transform(self, index: int):
data = {}
self.R.seed(index)
for key, dataset in zip(self.keys, self.data):
rand_idx = self.R.randint(0, len(dataset))
data[key] = dataset[rand_idx]
if self.transform is not None:
data = apply_transform(self.transform, data)
return data
class CustomDataModule(LightningDataModule):
def __init__(self,
train_image2d_folders: str = "path/to/folder",
val_image2d_folders: str = "path/to/folder",
test_image2d_folders: str = "path/to/dir",
shape: int = 256,
batch_size: int = 32,
train_samples: int = 4000,
val_samples: int = 800,
test_samples: int = 800,
):
super().__init__()
self.batch_size = batch_size
self.shape = shape
# self.setup()
self.train_image2d_folders = train_image2d_folders
self.val_image2d_folders = val_image2d_folders
self.test_image2d_folders = test_image2d_folders
self.train_samples = train_samples
self.val_samples = val_samples
self.test_samples = test_samples
# self.setup()
def glob_files(folders: str=None, extension: str='*.nii.gz'):
assert folders is not None
paths = [glob.glob(os.path.join(folder, extension), recursive = True) for folder in folders]
files = sorted([item for sublist in paths for item in sublist])
print(len(files))
print(files[:1])
return files
self.train_image2d_files = glob_files(folders=train_image2d_folders, extension='**/*.png')
self.val_image2d_files = glob_files(folders=val_image2d_folders, extension='**/*.png')
self.test_image2d_files = glob_files(folders=test_image2d_folders, extension='**/*.png')
def setup(self, seed: int=42, stage: Optional[str]=None):
# make assignments here (val/train/test split)
# called on every process in DDP
set_determinism(seed=seed)
def train_dataloader(self):
self.train_transforms = Compose(
[
LoadImaged(keys=["image2d"], ensure_channel_first=True),
# AddChanneld(keys=["image2d"],),
ScaleIntensityd(keys=["image2d"], minv=0.0, maxv=1.0,),
# CropForegroundd(keys=["image2d"], source_key="image", select_fn=(lambda x: x > 0), margin=0),
# RandZoomd(keys=["image2d"], prob=1.0, min_zoom=0.9, max_zoom=1.0, padding_mode='constant', mode=["area"]),
Resized(keys=["image2d"], spatial_size=256, size_mode="longest", mode=["area"]),
DivisiblePadd(keys=["image2d"], k=256, mode="constant", constant_values=0),
ToTensord(keys=["image2d"],),
]
)
self.train_datasets = UnpairedDataset(
keys=["image2d"],
data=[self.train_image2d_files],
transform=self.train_transforms,
length=self.train_samples,
batch_size=self.batch_size,
)
self.train_loader = DataLoader(
self.train_datasets,
batch_size=self.batch_size,
num_workers=8,
collate_fn=list_data_collate,
shuffle=True,
)
return self.train_loader
def val_dataloader(self):
self.val_transforms = Compose(
[
LoadImaged(keys=["image2d"], ensure_channel_first=True),
# AddChanneld(keys=["image2d"],),
ScaleIntensityd(keys=["image2d"], minv=0.0, maxv=1.0,),
# CropForegroundd(keys=["image2d"], source_key="image", select_fn=(lambda x: x > 0), margin=0),
HistogramNormalized(keys=["image2d"], min=0.0, max=1.0,),
Resized(keys=["image2d"], spatial_size=256, size_mode="longest", mode=["area"]),
DivisiblePadd(keys=["image2d"], k=256, mode="constant", constant_values=0),
ToTensord(keys=["image2d"],),
]
)
self.val_datasets = UnpairedDataset(
keys=["image2d"],
data=[self.val_image2d_files],
transform=self.val_transforms,
length=self.val_samples,
batch_size=self.batch_size,
)
self.val_loader = DataLoader(
self.val_datasets,
batch_size=self.batch_size,
num_workers=4,
collate_fn=list_data_collate,
shuffle=True,
)
return self.val_loader
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--seed", type=int, default=2222)
parser.add_argument("--shape", type=int, default=256, help="isotropic shape")
parser.add_argument("--datadir", type=str, default='data', help="data directory")
parser.add_argument("--batch_size", type=int, default=4, help="batch size")
hparams = parser.parse_args()
# Create data module
train_image2d_folders = [
# os.path.join(hparams.datadir, 'ChestXRLungSegmentation/JSRT/processed/images/'),
# os.path.join(hparams.datadir, 'ChestXRLungSegmentation/ChinaSet/processed/images/'),
# os.path.join(hparams.datadir, 'ChestXRLungSegmentation/Montgomery/processed/images/'),
os.path.join(hparams.datadir, 'ChestXRLungSegmentation/VinDr/v1/processed/train/images/'),
# os.path.join(hparams.datadir, 'ChestXRLungSegmentation/VinDr/v1/processed/test/images/'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62020/20200501/raw/images'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62021/20211101/raw/images'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/VinDr/v1/processed/train/images/'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/VinDr/v1/processed/test/images/'),
]
train_label2d_folders = [
]
val_image2d_folders = [
# os.path.join(hparams.datadir, 'ChestXRLungSegmentation/JSRT/processed/images/'),
# os.path.join(hparams.datadir, 'ChestXRLungSegmentation/ChinaSet/processed/images/'),
# os.path.join(hparams.datadir, 'ChestXRLungSegmentation/Montgomery/processed/images/'),
# os.path.join(hparams.datadir, 'ChestXRLungSegmentation/VinDr/v1/processed/train/images/'),
os.path.join(hparams.datadir, 'ChestXRLungSegmentation/VinDr/v1/processed/test/images/'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62020/20200501/raw/images'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/T62021/20211101/raw/images'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/VinDr/v1/processed/train/images/'),
# os.path.join(hparams.datadir, 'SpineXRVertSegmentation/VinDr/v1/processed/test/images/'),
]
test_image2d_folders = val_image2d_folders
datamodule = CustomDataModule(
train_image2d_folders = train_image2d_folders,
val_image2d_folders = val_image2d_folders,
test_image2d_folders = test_image2d_folders,
batch_size = hparams.batch_size,
shape = hparams.shape
)
datamodule.setup(seed=hparams.seed)