forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintegrated_gradients_test.py
135 lines (122 loc) · 5.78 KB
/
integrated_gradients_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
"""Tests for google_research.attribution.integrated_gradients."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from attribution import integrated_gradients
from tensorflow.contrib import layers as contrib_layers
class AttributionTest(tf.test.TestCase):
def testAddIntegratedGradientsOps(self):
with tf.Graph().as_default() as graph:
var1 = tf.compat.v1.get_variable(
name='var1', initializer=[[[1., 2., 3.]]])
input_tensor = tf.placeholder(shape=[None, None, 3], dtype=tf.float32)
x = tf.multiply(input_tensor, [[[1.]]])
var1_times_x = tf.multiply(var1, x)
var2 = tf.compat.v1.get_variable(
name='var2', initializer=[[4., 5.], [6., 7.], [4., 3.]])
matmul = tf.einsum('ijk,kl->ijl', var1_times_x, var2)
output_tensor = tf.reduce_sum(matmul, [1, 2], name='out')
input_feed_dict = {input_tensor.name: [[[2., 3., 4.], [5., 6., 7.]]]}
num_evals = tf.placeholder_with_default(
tf.constant(20, name='num_evals'), shape=())
attribution_hooks = integrated_gradients.AddIntegratedGradientsOps(
graph=graph,
attribution_tensors=[x],
output_tensor=output_tensor,
num_evals=num_evals,
attribution_dims_map={x: [1]},
zero_baseline_tensors=set([x]))
with tf.Session(graph=graph) as sess:
sess.run(tf.global_variables_initializer())
result = sess.run(
attribution_hooks['mean_grads'],
attribution_hooks['create_combined_feed_dict'](input_feed_dict))
self.assertTupleEqual(result[0].shape, (2, 1))
self.assertAlmostEqual(result[0][0, 0], 180.)
self.assertAlmostEqual(result[0][1, 0], 348.)
def testAddBOWIntegratedGradientsOps(self):
with tf.Graph().as_default() as graph:
# pyformat: disable
embedding_weights = tf.constant([[1., 3., 5.],
[4., 6., 8.],
[4., 5., 4.]])
batch_size = tf.placeholder_with_default(tf.constant(1, tf.int64), [])
sparse_ids = tf.SparseTensor(
[[0, 0], [0, 1], [0, 2]], [2, 0, 2], [batch_size, 3])
# pyformat: enable
sparse_embedding = contrib_layers.safe_embedding_lookup_sparse(
embedding_weights,
sparse_ids,
combiner='sum',
partition_strategy='div')
vector = tf.constant([1., 2., 4.])
output_tensor = tf.reduce_sum(vector * sparse_embedding, axis=1)
embedding_lookup = tf.nn.embedding_lookup(
embedding_weights,
tf.sparse_tensor_to_dense(sparse_ids),
partition_strategy='div')
bow_attribution_hooks = integrated_gradients.AddBOWIntegratedGradientsOps(
graph, [embedding_lookup], [sparse_embedding], [], output_tensor)
with tf.Session(graph=graph) as sess:
sess.run(tf.global_variables_initializer())
result = sess.run(bow_attribution_hooks['bow_attributions'])
self.assertTupleEqual(result[0].shape, (3,))
# Since the output is a sum of dot products, attributions are simply dot
# products of the embedding with [1., 2., 4.].
self.assertAlmostEqual(result[0][0], 30.)
self.assertAlmostEqual(result[0][1], 27.)
self.assertAlmostEqual(result[0][2], 30.)
def testGetEmbeddingLookupList(self):
with tf.Graph().as_default() as graph:
# pyformat: disable
embedding_weights = tf.constant([[1., 2., 3.],
[4., 6., 8.],
[5., 4., 3.]])
batch_size = tf.placeholder_with_default(tf.constant(1, tf.int64), [])
sparse_ids1 = tf.SparseTensor(
[[0, 0], [0, 1]], [2, 0], [batch_size, 2])
sparse_weights1 = tf.SparseTensor(
[[0, 0], [0, 1]], [4., 3.], [batch_size, 2])
sparse_ids2 = tf.SparseTensor(
[[0, 0], [0, 1], [0, 2]], [1, 1, 2], [batch_size, 3])
# pyformat: enable
embedding_lookup_list = integrated_gradients.GetEmbeddingLookupList(
['feature1', 'feature2'],
{'feature1': embedding_weights, 'feature2': embedding_weights},
{'feature1': sparse_ids1, 'feature2': sparse_ids2},
sparse_weights={'feature1': sparse_weights1, 'feature2': None},
combiners={'feature1': 'sqrtn', 'feature2': 'mean'})
with tf.Session(graph=graph) as sess:
sess.run(tf.global_variables_initializer())
result = sess.run(embedding_lookup_list)
expected = [[[[4., 3.2, 2.4],
[0.6, 1.2, 1.8]]],
[[[1.33, 2., 2.66],
[1.33, 2., 2.66],
[1.66, 1.33, 1.]]]]
self.assertTupleEqual(result[0].shape, (1, 2, 3))
self.assertTupleEqual(result[1].shape, (1, 3, 3))
for idx in range(len(expected)):
for row in range(len(expected[idx][0])):
for col in range(len(expected[idx][0][row])):
self.assertAlmostEqual(result[idx][0, row, col],
expected[idx][0][row][col],
delta=0.1)
if __name__ == '__main__':
tf.test.main()