-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathop_gen.py
508 lines (415 loc) · 17 KB
/
op_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8-80 compliant>
# ----------------------------------------------------------------------------
# General and auxiliary functions
# ----------------------------------------------------------------------------
# Initialization
import importlib
import bpy
import bmesh
import mathutils
import array
import numpy
import math
from sys import float_info
# Set up logging of messages using logging
# Logging is nicely explained in:
# https://code.blender.org/2016/05/logging-from-python-code-in-blender/
# Note to self: To see debug messages, configure logging in file
# $HOME/.config/blender/{version}/scripts/startup/setup_logging.py
# add there something like:
# import logging
# logging.basicConfig(format='%(funcName)s: %(message)s', level=logging.DEBUG)
import logging as l
# ----------------------------------------------------------------------------
def print_face_index():
"""Prints index numbers of currently selected faces."""
obj = bpy.context.active_object
bm = bmesh_from_object(obj)
for f in bm.faces:
if f.select:
print(f.index)
def print_edge_index():
"""Prints index numbers of currently selected edges."""
obj = bpy.context.active_object
bm = bmesh_from_object(obj)
for f in bm.edges:
if f.select:
print(f.index)
def print_vertex_index():
"""Prints index numbers of currently selected faces."""
obj = bpy.context.active_object
bm = bmesh_from_object(obj)
for v in bm.verts:
if v.select:
print(v.index)
def select_face_index(ilist):
"""Add argument face index or list of face indices to active selection."""
obj = bpy.context.active_object
bm = bmesh_from_object(obj)
bm.edges.ensure_lookup_table()
# Convert to list if needed, to make it iterable
if not isinstance(ilist, list):
ilist = [ilist]
for i in ilist:
bm.faces[i].select = True
bmesh.update_edit_mesh(obj.data)
def select_edge_index(ilist):
"""Add argument edge index or list of edge indices to active selection."""
obj = bpy.context.active_object
bm = bmesh_from_object(obj)
bm.edges.ensure_lookup_table()
# Convert to list if needed, to make it iterable
if not isinstance(ilist, list):
ilist = [ilist]
for i in ilist:
bm.edges[i].select = True
bmesh.update_edit_mesh(obj.data, True)
def select_vertex_index(ilist):
"""Add argument vertex index or list of vertex indices to
active selection.
"""
obj = bpy.context.active_object
bm = bmesh_from_object(obj)
bm.verts.ensure_lookup_table()
# Convert to list if needed, to make it iterable
if not isinstance(ilist, list):
ilist = [ilist]
for i in ilist:
bm.verts[i].select = True
bmesh.update_edit_mesh(obj.data, True)
def obj_index_list(obj_list):
"""Generates index list from argument object list. Use this to convert
list of objects to a list of object indices. Index is assumed to be
returned by object index property. Works for e.g. BMesh faces, edges and
vertices.
"""
r = len(obj_list) * [0]
for i in range(len(r)):
r[i] = obj_list[i].index
return r
def str_indices(list):
"""Returns string of space separated indices of objects in list"""
string = ""
for i in list:
if isinstance(i, int):
string += "%d " % i
else:
string += "%d " % i.index
return string.strip()
def bmesh_edge_center(edge):
"""Calculates coordinates for edge center using edge vertex coordinates."""
return (edge.verts[0].co + edge.verts[1].co) / 2
def bmesh_face_get_partial(bm, vlist):
"""Finds faces which uses all vertices in vertex list vlist,
but may contain also other vertices. Returns None if none is found,
otherwise returns list of faces.
"""
f = [f for f in bm.faces if all(v in f.verts for v in vlist)]
if f == []:
return None
return f
def obj_probe_hit_face(obj, bm, f_co, f_dir, f_index):
"""Casts a ray towards f_dir from coordinates f_co and
checks if the normal of the face hit by ray is towards this face.
f_index is the face index number of source face at f_co, used for
self collision check.
Return value 1: True if normal of hit face is towards this face,
otherwise False.
Return value 2: index number of face which was hit by ray casting.
"""
ok, hit_co, hit_no, hit_index = face_ray_cast(obj, f_co, f_dir, f_index)
# If ray hits world boundary, then normal direction is right
if not ok:
return (True, hit_index)
# Calculate alignment of hit normal direction with this face normal.
# Note: Can't use hit_no because object data normals can be out of date.
cos_theta = f_dir @ bm.faces[hit_index].normal
if cos_theta > 0:
return (False, hit_index)
else:
return (True, hit_index)
def face_ray_cast(source, co, ray_dir, fi_list, max_ray_len=float_info.max):
"""Face based wrapper for mathutils.bvhtree.ray_cast() (source is
a BVHTree) and bpy.types.Object.ray_cast() (source is an Object).
Guarantees that ray cast from co towards ray_dir will not hit
face(s) with index in list of indices fi_list.
This is used to prevent self-collision for ray casting.
"""
# Convert fi_list to list if needed, to make it iterable
if not isinstance(fi_list, list):
fi_list = [fi_list]
# EPS is length of ray_dir that co is projected as a starting
# point used in ray casting.
EPS0 = 1e-6
EPS = EPS0
ray_start = co
# ray_cast returns slighty different things for Objects and BVHTrees
if isinstance(source, bpy.types.Object):
ok, hit_co, hit_no, hit_index = \
source.ray_cast(ray_start + EPS*ray_dir, \
ray_dir, distance=max_ray_len)
elif isinstance(source, mathutils.bvhtree.BVHTree):
hit_co, hit_no, hit_index, hit_length = \
source.ray_cast(ray_start + EPS*ray_dir, ray_dir, max_ray_len)
if hit_co:
ok = True
else:
ok = False
else:
raise TypeError("source type is not compatible")
# Twisted faces can cause ray hitting itself.
# If that happens, then cast another ray starting from near hit point.
iter = 0
maxiter = 16
while hit_index in fi_list and iter < maxiter:
ray_start = hit_co
EPS *= 2 # Increase EPS to speed up convergence
if isinstance(source, bpy.types.Object):
ok, hit_co, hit_no, hit_index = \
source.ray_cast(ray_start + EPS*ray_dir, ray_dir, max_ray_len)
elif isinstance(source, mathutils.bvhtree.BVHTree):
hit_co, hit_no, hit_index, hit_length = \
source.ray_cast(ray_start + EPS*ray_dir, ray_dir, max_ray_len)
if hit_co:
ok = True
else:
ok = False
iter += 1
if iter == maxiter:
raise ValueError("Cast ray reached maximum iterations %d" % maxiter)
if ok:
# If hit coordinates are close to target coordinates,
# then don't count that as a hit.
# TODO: Check why BVHTree doesn't seem to honor max ray length?
if (hit_co - co).length / max_ray_len > (1 - EPS0):
l.debug("Max ray length limit reached")
return False, None, None, None
return ok, hit_co, hit_no, hit_index
def calc_vert_edge_edge_angle(v, e1, e2):
"""Calculates angle in radians between edges e1 and e2, both of which are
connected at vertex v. Returns None if edges are not connected
at vertex v, or if any argument is None.
"""
# l.debug("vert %d - edges %d,%d" % (v.index, e1.index, e2.index))
# l.debug(" edge 1 verts are %d, %d" % (e1.verts[0].index, e1.verts[1].index))
# l.debug(" edge 2 verts are %d, %d" % (e2.verts[0].index, e2.verts[1].index))
if v == None or e1 == None or e2 == None:
l.debug("Warning: v, e1 or e2 is None")
return None
if v not in e1.verts or v not in e2.verts:
l.debug("Warning: v not in e1 or e2 verts")
return None
# Generate normalized edge vectors
if e1.verts[0] == v:
vec1 = e1.verts[1].co - v.co
else:
vec1 = e1.verts[0].co - v.co
vec1.normalize()
if e2.verts[0] == v:
vec2 = e2.verts[1].co - v.co
else:
vec2 = e2.verts[0].co - v.co
vec2.normalize()
# Calculate angle [rad] between vec1 and vec2
# Limit -1.0 <= vecprod <= 1.0 so that value is physical
vecprod = max(-1.0, min(1.0, vec1 @ vec2))
angle = math.acos(vecprod)
# l.debug("Angle between edges %d and %d " % (e1.index, e2.index) \
# + "is %f" % angle)
return angle
def face_face_cos_angle(e, f=None, f_neighbor=None):
"""Calculates cosine of angle between two connected faces, which
share a common edge e. If faces f1 and f2 are not given as arguments,
it is assumed that edge e is shared by exactly two faces
(non-manifold edges are not allowed). Returns None if edge does not
connect two faces.
"""
if f == None or f_neighbor == None:
# Find faces of edge e
l.debug("Edge %d has %d link_faces" % (e.index, len(e.link_faces)))
if len(e.link_faces) != 2:
return None
f = e.link_faces[0]
f_neighbor = e.link_faces[1]
else:
# Make sure edge connects given two faces before continuing
etest = [etest for etest in f.edges if etest in f_neighbor.edges]
if e not in etest:
return None
# face center coordinates
f_center = f.calc_center_median()
f_neighbor_center = f_neighbor.calc_center_median()
return edge_vec_vec_cos_angle(e, f_center, f_neighbor_center)
def edge_vec_vec_cos_angle(e, vec1, vec2):
"""Calculates cosine of angle between two vectors which are
orthogonal projections for edge e. This is used to calculate
cos(angle) for two faces which share edge e, and vec1 and vec2
represent the faces' center coordinate vectors.
"""
# Calculate cos(epsilon) where epsilon is the angle between the two
# faces connected by edge e. cos(epsilon) is mathematically angle between
# vectors e_ortho_f -> f_center and e_ortho_f_neighbor -> f_neighbor_center.
# e_ortho_f is point along edge e which forms 90 degree angle between
# edge point 1 -> edge point 2 and e_ortho_f -> f_center.
# Similarly e_ortho_f_neighbor is point along edge e which forms 90 degree
# angle between edge point 1 -> edge point 2 and
# e_ortho_f_neighbor -> f_neighbor_center.
#
# Diagram example with two triangular faces: + marks face boundary edges,
# x = e_ortho_f, y = e_ortho_f_neighbor, c = edge or face center
#
# +++
# + +++++
# + c +++++ <-- f
# + I +++++++
# 1----x------c---y--------2 <-- edge e
# +++++ I ++
# +++++ c +++ <-- f_neighbor
# ++++ ++
# +++
e_center = bmesh_edge_center(e) # edge center
vec_e = e.verts[1].co - e.verts[0].co # edge vector
# Calculate orthogonal vector e_ortho_f -> f_center and normalize it
f_center = vec1 # face center coordinates
vec_f_center = f_center - e_center
project_f = vec_f_center.project(vec_e) # project vec_f to vec_e
e_ortho_f = e_center + project_f # coordinates for x
vec_ortho_f = f_center - e_ortho_f # orthogonal vector
vec_ortho_f.normalize() # normalize it
# Similarly to above, calculate orthogonal vector
# e_ortho_f_neighbor -> f_neighbor_center and normalize it
f_neighbor_center = vec2
vec_f_neighbor_center = f_neighbor_center - e_center
project_f_neighbor = vec_f_neighbor_center.project(vec_e)
e_ortho_f_neighbor = e_center + project_f_neighbor
vec_ortho_f_neighbor = f_neighbor_center - e_ortho_f_neighbor
vec_ortho_f_neighbor.normalize()
# Finally calculate cos(angle) between faces
cos_epsilon = vec_ortho_f @ vec_ortho_f_neighbor
# Limit -1.0 <= cos_epsilon <= 1.0 for physical correctness
cos_epsilon = max(-1.0, min(1.0, cos_epsilon))
return cos_epsilon
def edge_face_vertex_cos_angle (e, f, v):
"""Calculates cos(angle) for angle which would be formed
between face f (which contains edge e) and a hypothetical connected
triangle face f2, which is hypothetically formed by connecting vertices
of edge e to vertex v. Alternatively, v can be thought of as a vertex
located at the hypothetical face center. Result is same in both cases.
"""
if e == None or f == None or v == None:
return None
if f not in e.link_faces:
return None
# face center coordinates
f_center = f.calc_center_median()
return edge_vec_vec_cos_angle(e, f_center, v.co)
def bmesh_verts_share_edge(bm, v1, v2):
"""Checks if vertices v1 and v2 in bmesh bm are connected
via an edge. First return value is boolean which is True if
edge exists and False otherwise. Second return value is the
shared edge or None.
"""
if v1 == v2:
raise ValueError(str(v1) + " and " + str(v2) + " are equal")
for e in bm.edges:
if (v1 in e.verts) and (v2 in e.verts):
return True, e
return False, None
def bmesh_copy_face(src_flist, bm):
"""Creates a copy of face(s) in src_flist to bmesh bm."""
from .op_norms import propagate_face_normal_from_any
flist = [] # list of new faces in destination bmesh
# Convert flist to list if needed, to make it iterable
# First check is for iterability, second check is for lists.
if (not hasattr(src_flist, '__iter__')) and (not isinstance(src_flist, list)):
src_flist = [src_flist]
n = 0
for f in src_flist:
n += 1
vlist = [] # list of face vertices in destination bmesh
for v in f.verts:
test, vdst = bmesh_vert_exists_at(bm, v.co)
if test:
if vdst in vlist:
raise ValueError("Vertex %d already in list" % v.index)
vlist.append(vdst)
else:
nv = bm.verts.new(v.co)
vlist.append(nv)
nf = bm.faces.new(vlist)
nf.normal_update()
flist.append(nf)
# Print out progress
if (n % 100 == 0):
l.info("Appended %d faces" % n)
# Finally update lookup tables and propagate normals from neighbors
bm.faces.index_update()
bm.faces.ensure_lookup_table()
n = 0
for f in flist:
n += 1
if not propagate_face_normal_from_any(f, flist):
# If no old neighbors exist, try to take normal from any neighbor
propagate_face_normal_from_any(f)
# Print out progress
if (n % 100 == 0):
l.info("Propagated normals to %d faces" % n)
def bmesh_vert_exists_at(bm, co):
"""Finds a vertex in bm located very close to coordinates co.
First return value is True if vertex is found and False otherwise.
Second return value is the vertex, or None if none was found.
"""
# tolerance allowed for difference in vertex location
EPS = 1e-6
# Decided to use absolute tolerance to test for closeness
v = [v for v in bm.verts if (v.co - co).length < EPS]
# relative error tolerance alternative would be something like
# if 2.0 * (v.co - co).length / (v.co.length + co.length) < EPS]
if len(v) > 0:
return True, v[0]
return False, None
def bmesh_copy_from_object(obj):
"""Returns a copy of the mesh"""
assert obj.type == 'MESH'
me = obj.data
if obj.mode == 'EDIT':
bm_orig = bmesh.from_edit_mesh(me)
bm = bm_orig.copy()
else:
bm = bmesh.new()
bm.from_mesh(me)
return bm
def bmesh_to_object(obj, bm):
"""Object/Edit Mode update the object."""
me = obj.data
if obj.mode == 'EDIT':
bmesh.update_edit_mesh(me, loop_triangles=True)
else:
bm.to_mesh(me)
me.update()
def bmesh_from_object(obj):
"""Object/Edit Mode get mesh, use bmesh_to_object() to write back."""
me = obj.data
if obj.mode == 'EDIT':
bm = bmesh.from_edit_mesh(me)
else:
bm = bmesh.new()
bm.from_mesh(me)
return bm