Skip to content

Latest commit

 

History

History
58 lines (37 loc) · 1.69 KB

Readme.md

File metadata and controls

58 lines (37 loc) · 1.69 KB

WindFlow: Dense feature tracking of atmospheric winds with deep optical flow

Vandal, T., Duffy, K., McCarty, W., Sewnath, A., & Nemani, R. (2022). Dense feature tracking of atmospheric winds with deep optical flow, Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

Setup

conda env create -f environment.yml
pip install spatial-correlation-sampler

Download data

G5NR data used in the study is a total of 7.5 TBs containing specific humidity (QV), u-direction (U), and v-direction (V).
https://gmao.gsfc.nasa.gov/global_mesoscale/7km-G5NR/data_access/
https://portal.nccs.nasa.gov/datashare/gmao_obsteam/osse_for_wisc/

python data/download_g5nr.py data/G5NR

Make training samples

mpirun -np 4 python windflow/datasets/g5nr/g5nr.py data/G5NR data/G5NR_patches/

Train optical flow model

python train.py --model_path models/raft-size_512/ --dataset g5nr --data_path data/G5NR_patches --model_name raft --batch_size 2 --loss L1 --max_iterations 500000 --lr 0.00001

Trained model weights can be found here: model_weights/windflow.raft.pth.tar

Perform Inference on G5NR Test Set

On a single V100 GPU, inference applied to 1 files takes ~75 seconds.

cd pipelines/g5nr/
CUDA_VISIBLE_DEVICES=0 python pipelines/g5nr/g5nr_to_flows.py --model_name raft

Transfer to GOES-16 ABI

GOES-16/17 data can be accessed via AWS public cloud

Data access found here: https://registry.opendata.aws/noaa-goes/

python pipelines/geo/geo_flows_to_zarr.py --checkpoint model_weights/windflow.raft.pth.tar

Acknowledgements

External packages and flownet code was used from: https://github.com/celynw/flownet2-pytorch/