-
Notifications
You must be signed in to change notification settings - Fork 1
/
inference.py
executable file
·107 lines (88 loc) · 3.38 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import numpy as np
import torch
from models import SplitGenVAE
import utils
def domain_to_domain(model, data, domain1, domain2, bands1=None, bands2=None, device=None,
latent=False):
'''
Perform a forward pass to translate from domain1 to domain2
Args:
model (SplitGenVAE): pytorch module
data (np.array): Array of shape (H,W,C)
domain1 (str): Name of data domain (G16,G17,H8)
domain2 (str): Name of target domain (G16,G17,H8)
bands1 (list or np.array): Indices of bands to select as inputs
bands2 (list or np.array): Indices of bands to select as outputs
device (str): which device to load data into
latent (boolean): Whether to return latent features, default False
Returns:
np.array of target prediction
(optional) np.array of latent features
'''
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# get statistics for normalization
mu1, std1 = utils.get_sensor_stats(domain1)
mu2, std2 = utils.get_sensor_stats(domain2)
# select bands
if bands1 is None:
bands1 = np.arange(0,16)
if bands2 is None:
bands2 = np.arange(0,16)
data = data[:,:,bands1]
mu1 = np.array(mu1)[bands1]
std1 = np.array(std1)[bands1]
mu2 = np.array(mu2)[bands2]
std2 = np.array(std2)[bands2]
# normalize inputs, add axis, send to device
data_norm = (data - mu1) / std1
data_norm = np.transpose(data_norm, (2,0,1))[np.newaxis]
data_norm = torch.Tensor(data_norm).to(device)
# encode to latent space
z, noise = model.encode(data_norm, domain1)
skip_x = None
if model.skip_dim:
skip_x = data_norm[:,model.skip_dim]
# decode to target domain
estimate = model.decode(z, domain2, skip_x=skip_x)[0].detach().cpu().numpy() # decode to bands
estimate = np.transpose(estimate, (1,2,0))
# de-normalize target
estimate = estimate * std2 + mu2
# place some restrictions on thermal ranges
thermal_bands = bands2[bands2 >= 6]
thermal = estimate[:,:,thermal_bands]
thermal[thermal < 180] = np.nan
thermal[thermal > 350] = np.nan
estimate[:,:,thermal_bands] = thermal
if latent:
return estimate, z.detach().cpu().numpy()[0]
return estimate
def load_model(config_file, device=None):
'''
Load SplitGenVAE model for inference
Args:
config_file: get parameters and model_directory from configuration file
device: set device for inference
Return:
SplitGenVAE (torch.nn.Module)
params (dict)
'''
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
params = utils.get_config(config_file)
model = SplitGenVAE(params)
model.to(device)
checkpoint_path = os.path.join(params['model_path'], 'checkpoint.flownet.pth.tar')
checkpoint = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(checkpoint['gen_state'])
step = checkpoint['global_step']
print(f"Loaded model from step: {step}")
return model, params
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str)
parser.add_argument('inputfile', type=str)
parser.add_argument('outputfile', type=str)
args = parser.parse_args()
model = load_model(args['config'])