-
Notifications
You must be signed in to change notification settings - Fork 11
/
dyn_util.pyx
766 lines (560 loc) · 21.8 KB
/
dyn_util.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
from libc.math cimport exp, abs, sqrt, ceil, pow
from numpy cimport ndarray, double_t, int_t, dtype
from numpy.math cimport INFINITY
import numpy, time, sys
BOLTZMANN_K = 0.0019872041
#ctypedef int_t int
#ctypedef double_t double
class NucCythonError(Exception):
def __init__(self, err):
Exception.__init__(self, err)
cdef getRepulsionList(ndarray[long, ndim=2] rep_list,
ndarray[double, ndim=2] coords,
ndarray[double, ndim=3] regions_1,
ndarray[double, ndim=4] regions_2,
ndarray[int, ndim=1] idx_1,
ndarray[int, ndim=2] idx_2,
int s1, int s2, int nCoords, int n_rep_max,
#double rep_dist, ndarray[double, ndim=1] radii,
ndarray[double, ndim=1] rep_dists, ndarray[double, ndim=1] radii,
double max_radius):
cdef int i, j, k, i1, i2, j1, j2, n2
cdef int a, b, a0, b0, a1, b1, a2, b2, p0, p, q0, q
cdef int n = 0 # Num close pairs
cdef int n1 = 0 # Num primary regions
cdef int s3 = s2/s1
cdef int n_rep_found = 0
cdef double dx, dy, dz, d2
cdef double d_lim
cdef double d_lim2
#cdef double rep_dist2 = rep_dist + max_radius
cdef double rep_dist2
if nCoords < s2: # No split
for i in range(nCoords-2):
for j in range(i+2, nCoords):
#d_lim = rep_dist + radii[i] + radii[j]
d_lim = rep_dists[i] + radii[i] + rep_dists[j] + radii[j]
dx = coords[i,0] - coords[j,0]
if abs(dx) > d_lim:
continue
dy = coords[i,1] - coords[j,1]
if abs(dy) > d_lim:
continue
dz = coords[i,2] - coords[j,2]
if abs(dz) > d_lim:
continue
d2 = dx*dx + dy*dy + dz*dz
d_lim2 = d_lim * d_lim
if d2 > d_lim2:
continue
if n < n_rep_max:
rep_list[n,0] = i
rep_list[n,1] = j
n += 1
n_rep_found += 1
elif nCoords < s1 * s2: # Single split
# Calc bounding X regions
n1 = 0
for i in range(0, nCoords, s1):
rep_dist2 = 2*rep_dists[i] + max_radius
for k in range(3):
regions_1[n1,k,0] = coords[i,k]
regions_1[n1,k,1] = coords[i,k]
for j in range(i+1, i+s1):
if j >= nCoords:
break
if coords[j,0] < regions_1[n1,0,0]:
regions_1[n1,0,0] = coords[j,0]
if coords[j,0] > regions_1[n1,0,1]:
regions_1[n1,0,1] = coords[j,0]
if coords[j,1] < regions_1[n1,1,0]:
regions_1[n1,1,0] = coords[j,1]
if coords[j,1] > regions_1[n1,1,1]:
regions_1[n1,1,1] = coords[j,1]
if coords[j,2] < regions_1[n1,2,0]:
regions_1[n1,2,0] = coords[j,2]
if coords[j,2] > regions_1[n1,2,1]:
regions_1[n1,2,1] = coords[j,2]
for k in range(3):
regions_1[n1,k,0] -= rep_dist2
regions_1[n1,k,1] += rep_dist2
n1 += 1 # Number of primary regions
idx_1 = regions_1[:,0,0].argsort(kind='heapsort').astype(numpy.int32) # Sort X starts
for a0 in range(n1):
a = idx_1[a0]
a1 = a * s1
a2 = min(nCoords, a1 + s1)
# Compare between regions
for b0 in range(a0, n1):
b = idx_1[b0]
b1 = b * s1
b2 = min(nCoords, b1 + s1)
if regions_1[b,0,0] < regions_1[a,0,1]:
if regions_1[b,1,1] < regions_1[a,1,0]:
continue
if regions_1[b,1,0] > regions_1[a,1,1]:
continue
if regions_1[b,2,1] < regions_1[a,2,0]:
continue
if regions_1[b,2,0] > regions_1[a,2,1]:
continue
if a1 < b1:
i1 = a1
i2 = a2
j1 = b1
j2 = b2
else:
i1 = b1
i2 = b2
j1 = a1
j2 = a2
for i in range(i1, i2):
for j in range(j1, j2):
if j < i+2: # not sequential
continue
#d_lim = rep_dist + radii[i] + radii[j]
d_lim = rep_dists[i] + radii[i] + rep_dists[j] + radii[j]
dx = coords[i,0] - coords[j,0]
if abs(dx) > d_lim:
continue
dy = coords[i,1] - coords[j,1]
if abs(dy) > d_lim:
continue
dz = coords[i,2] - coords[j,2]
if abs(dz) > d_lim:
continue
d2 = dx*dx + dy*dy + dz*dz
d_lim2 = d_lim * d_lim
if d2 > d_lim2:
continue
if n < n_rep_max:
rep_list[n,0] = i
rep_list[n,1] = j
n += 1
n_rep_found += 1
else: # All subsequent regions do not overlap
break
else: # Double split
# Calc bounding X regions
n1 = 0
for i in range(0, nCoords, s2): # Large region starts
rep_dist2 = 2*rep_dists[i] + max_radius
for a in range(3):
regions_1[n1,a,0] = coords[i,a]
regions_1[n1,a,1] = coords[i,a]
j = i
for n2 in range(s3): # Small regions
for a in range(3):
regions_2[n1,n2,a,0] = coords[j,a]
regions_2[n1,n2,a,1] = coords[j,a]
# Bounding box for small region
for k in range(j+1, j+s1): # All remaining points
if k >= nCoords:
break
for a in range(3):
if coords[k,a] < regions_2[n1,n2,a,0]:
regions_2[n1,n2,a,0] = coords[k,a]
if coords[k,a] > regions_2[n1,n2,a,1]:
regions_2[n1,n2,a,1] = coords[k,a]
# Bounding box of large region using small regions
for a in range(3):
if regions_2[n1,n2,a,0] < regions_1[n1,a,0]:
regions_1[n1,a,0] = regions_2[n1,n2,a,0]
if regions_2[n1,n2,a,1] > regions_1[n1,a,1]:
regions_1[n1,a,1] = regions_2[n1,n2,a,1]
for a in range(3):
regions_2[n1,n2,a,0] -= rep_dist2
regions_2[n1,n2,a,1] += rep_dist2
j += s1
if j >= nCoords:
break
for a in range(3):
regions_1[n1,a,0] -= rep_dist2
regions_1[n1,a,1] += rep_dist2
n1 += 1
idx_1 = regions_1[:,0,0].argsort(kind='heapsort').astype(numpy.int32) # Order X starts
idx_2 = regions_2[:,:,0,0].argsort(kind='heapsort', axis=1).astype(numpy.int32)
for p0 in range(n1):
p = idx_1[p0]
for q0 in range(p0, n1):
q = idx_1[q0]
if regions_1[q,0,0] >= regions_1[p,0,1]: # Remainder do not overlap as they are in X order
break
if regions_1[q,1,1] < regions_1[p,1,0]:
continue
if regions_1[q,1,0] > regions_1[p,1,1]:
continue
if regions_1[q,2,1] < regions_1[p,2,0]:
continue
if regions_1[q,2,0] > regions_1[p,2,1]:
continue
# Big bounding boxes overlap
for a0 in range(s3):
a = idx_2[p,a0]
a1 = p * s2 + a * s1 # Region start
a2 = min(nCoords, a1 + s1) # Region limit
if p == q:
n2 = a0 # Only compare other ones in same big box
else:
n2 = 0 # Compare all in other big box
# Compare between regions
for b0 in range(n2, s3):
b = idx_2[q,b0]
if regions_2[q,b,0,0] >= regions_2[p,a,0,1]:
break
if regions_2[q,b,0,1] < regions_2[p,a,0,0]: # Can happen across different big boxes
continue
if regions_2[q,b,1,1] < regions_2[p,a,1,0]:
continue
if regions_2[q,b,1,0] > regions_2[p,a,1,1]:
continue
if regions_2[q,b,2,1] < regions_2[p,a,2,0]:
continue
if regions_2[q,b,2,0] > regions_2[p,a,2,1]:
continue
b1 = q * s2 + b * s1
b2 = min(nCoords, b1 + s1)
if a1 < b1:
i1 = a1
i2 = a2
j1 = b1
j2 = b2
else:
i1 = b1
i2 = b2
j1 = a1
j2 = a2
# Small bounding boxes overlap
for i in range(i1, i2):
for j in range(j1, j2):
if j < i+2: # avoid sequential
continue
#d_lim = rep_dist + radii[i] + radii[j]
d_lim = rep_dists[i] + radii[i] + rep_dists[j] + radii[j]
dx = coords[i,0] - coords[j,0]
if abs(dx) > d_lim:
continue
dy = coords[i,1] - coords[j,1]
if abs(dy) > d_lim:
continue
dz = coords[i,2] - coords[j,2]
if abs(dz) > d_lim:
continue
d2 = dx*dx + dy*dy + dz*dz
d_lim2 = d_lim * d_lim
if d2 > d_lim2:
continue
if n < n_rep_max:
rep_list[n,0] = i
rep_list[n,1] = j
n += 1
n_rep_found += 1
return n, n_rep_found
cdef double getTemp(ndarray[double, ndim=1] masses,
ndarray[double, ndim=2] veloc,
int nCoords):
cdef int i
cdef double kin = 0.0
for i in range(nCoords):
if masses[i] == INFINITY:
continue
kin += masses[i] * (veloc[i,0]*veloc[i,0] + veloc[i,1]*veloc[i,1] + veloc[i,2]*veloc[i,2])
return kin / (3 * nCoords * BOLTZMANN_K)
def getStats(ndarray[int, ndim=2] rest_indices,
ndarray[double, ndim=2] rest_limits,
ndarray[double, ndim=2] coords,
int nRest):
cdef int i, nViol = 0
cdef int j, k
cdef double viol, dmin, dmax, dx, dy, dz, r, s = 0
for i in range(nRest):
j = rest_indices[i,0]
k = rest_indices[i,1]
if j == k:
continue
dmin = rest_limits[i,0]
dmax = rest_limits[i,1]
dx = coords[j,0] - coords[k,0]
dy = coords[j,1] - coords[k,1]
dz = coords[j,2] - coords[k,2]
r = sqrt(dx*dx + dy*dy + dz*dz)
if r < dmin:
viol = dmin - r
nViol += 1
elif r > dmax:
viol = r - dmax
nViol += 1
else:
viol = 0
s += viol * viol
return nViol, sqrt(s/nRest)
cdef void updateMotion(ndarray[double, ndim=1] masses,
ndarray[double, ndim=2] forces,
ndarray[double, ndim=2] accel,
ndarray[double, ndim=2] veloc,
ndarray[double, ndim=2] coords,
int nCoords, double tRef,
double tStep, double beta):
cdef int i
cdef double r, rtStep, temp
rtStep = 0.5 * tStep * tStep
temp = getTemp(masses, veloc, nCoords)
temp = max(temp, 0.001)
r = beta * (tRef/temp-1.0)
for i in range(nCoords):
accel[i,0] = forces[i,0] / masses[i] + r * veloc[i,0]
accel[i,1] = forces[i,1] / masses[i] + r * veloc[i,1]
accel[i,2] = forces[i,2] / masses[i] + r * veloc[i,2]
coords[i,0] += tStep * veloc[i,0] + rtStep * accel[i,0]
coords[i,1] += tStep * veloc[i,1] + rtStep * accel[i,1]
coords[i,2] += tStep * veloc[i,2] + rtStep * accel[i,2]
veloc[i,0] += tStep * accel[i,0]
veloc[i,1] += tStep * accel[i,1]
veloc[i,2] += tStep * accel[i,2]
cdef void updateVelocity(ndarray[double, ndim=1] masses,
ndarray[double, ndim=2] forces,
ndarray[double, ndim=2] accel,
ndarray[double, ndim=2] veloc,
int nCoords, double tRef,
double tStep, double beta):
cdef int i
cdef double r, temp
temp = getTemp(masses, veloc, nCoords)
#avoid division by 0 temperature
temp = max(temp, 0.001)
r = beta * (tRef/temp-1.0)
for i in range(nCoords):
veloc[i,0] += 0.5 * tStep * (forces[i,0] / masses[i] + r * veloc[i,0] - accel[i,0])
veloc[i,1] += 0.5 * tStep * (forces[i,1] / masses[i] + r * veloc[i,1] - accel[i,1])
veloc[i,2] += 0.5 * tStep * (forces[i,2] / masses[i] + r * veloc[i,2] - accel[i,2])
cdef double getRepulsiveForce(ndarray[long, ndim=2] rep_list,
ndarray[double, ndim=2] forces,
ndarray[double, ndim=2] coords,
int nRep, double fConst,
ndarray[double, ndim=1] radii):
cdef int i, j, k
cdef double dx, dy, dz, d2, dr, rjk
cdef double force = 0
cdef double repDist2
if fConst == 0:
return force
for i from 0 <= i < nRep:
j = rep_list[i,0]
k = rep_list[i,1]
repDist = radii[j] + radii[k]
repDist2 = repDist * repDist
dx = coords[k,0] - coords[j,0]
if abs(dx) > repDist:
continue
dy = coords[k,1] - coords[j,1]
if abs(dy) > repDist:
continue
dz = coords[k,2] - coords[j,2]
if abs(dz) > repDist:
continue
d2 = dx*dx + dy*dy + dz*dz
if d2 > repDist2:
continue
dr = repDist2 - d2
#energy contribution
force += fConst * dr * dr
rjk = 4 * fConst * dr
dx *= rjk
dy *= rjk
dz *= rjk
#force contributions
forces[j,0] -= dx
forces[k,0] += dx
forces[j,1] -= dy
forces[k,1] += dy
forces[j,2] -= dz
forces[k,2] += dz
return force
cdef double getRestraintForce(ndarray[double, ndim=2] forces,
ndarray[double, ndim=2] coords,
ndarray[int, ndim=2] rest_indices,
ndarray[double, ndim=2] rest_limits,
ndarray[double, ndim=1] rest_weight,
ndarray[int, ndim=1] rest_ambig,
double fConst, double exponent=2.0,
double switchRatio=0.5, double asymptote=1.0):
cdef int i, j, k, n, m, nAmbig
cdef double a, b, d, dmin, dmax, dx, dy, dz, distSwitch
cdef double r, r2, s2, rjk, ujk, force = 0, t
for m in range(len(rest_ambig) - 1):
nAmbig = rest_ambig[m+1] - rest_ambig[m]
i = rest_ambig[m]
r2 = 0.0
for n in range(nAmbig):
j = rest_indices[i+n,0]
k = rest_indices[i+n,1]
if j == k:
continue
dx = coords[j,0] - coords[k,0]
dy = coords[j,1] - coords[k,1]
dz = coords[j,2] - coords[k,2]
r = max(dx*dx + dy*dy + dz*dz, 1e-08)
r2 += 1.0 / (r * r)
if r2 <= 0:
continue
r2 = 1.0 / sqrt(r2)
dmin = rest_limits[i,0]
dmax = rest_limits[i,1]
distSwitch = dmax * switchRatio
if r2 < dmin*dmin:
r2 = max(r2, 1e-8)
d = dmin - sqrt(r2)
ujk = fConst * d * d
rjk = fConst * exponent * d
elif dmin*dmin <= r2 <= dmax*dmax:
ujk = rjk = 0
r = 1.0
elif dmax*dmax < r2 <= (dmax+distSwitch) * (dmax+distSwitch):
d = sqrt(r2) - dmax
ujk = fConst * d * d
rjk = - fConst * exponent * d
else: # (dmax+distSwitch) ** 2 < r2
b = distSwitch * distSwitch * distSwitch * exponent * (asymptote - 1)
a = distSwitch * distSwitch * (1 - 2*asymptote*exponent + exponent)
d = sqrt(r2) - dmax
ujk = fConst * (a + asymptote*distSwitch*exponent*d + b/d)
rjk = - fConst * (asymptote*distSwitch*exponent - b/(d*d))
force += ujk
for n in range(nAmbig):
j = rest_indices[i+n,0]
k = rest_indices[i+n,1]
if j == k:
continue
dx = coords[j,0] - coords[k,0]
dy = coords[j,1] - coords[k,1]
dz = coords[j,2] - coords[k,2]
s2 = max(dx*dx + dy*dy + dz*dz, 1e-08)
t = rjk * pow(r2, 2.5) / (s2 * s2 * s2) * rest_weight[i+n]
dx *= t
dy *= t
dz *= t
forces[j,0] += dx
forces[k,0] -= dx
forces[j,1] += dy
forces[k,1] -= dy
forces[j,2] += dz
forces[k,2] -= dz
return force
def run_dynamics(ndarray[double, ndim=2] coords,
ndarray[double, ndim=1] masses,
ndarray[double, ndim=1] radii,
ndarray[double, ndim=1] rep_dists,
ndarray[int, ndim=2] rest_indices,
ndarray[double, ndim=2] rest_limits,
ndarray[double, ndim=1] rest_weight,
ndarray[int, ndim=1] rest_ambig,
double tRef=1000.0, double tStep=0.001, int nSteps=1000,
double fConstR=1.0, double fConstD=25.0,
double bead_size=1.0, int n_rep_max=0,
double beta=10.0, double time_taken=0.0,
int print_interval=10000, double tot0=20.458):
cdef int nRest = len(rest_indices)
cdef int nCoords = len(coords)
cdef int i, j, n, step, nViol, nRep = 0
cdef int s1 = 8 # Small bounding box size
cdef int s2 = 32 * s1 # Large bounding box size
cdef int s0, n_rep_found
if nCoords >= s2 * s1: # Double split
s0 = s2
else:
s0 = s1
if n_rep_max == 0:
n_rep_max = nCoords * 10
cdef double d2, dx, dy, dz, ek, rmsd, tStep0, temp, fDist, fRep
cdef double t0 = time.time()
cdef double max_radius = radii.max()
cdef ndarray[double, ndim=1] delta_lim = rep_dists * rep_dists
cdef ndarray[double, ndim=2] veloc = numpy.random.normal(0.0, 1.0, (nCoords, 3))
cdef ndarray[double, ndim=2] coordsPrev = numpy.array(coords)
cdef ndarray[double, ndim=2] accel = numpy.zeros((nCoords, 3))
cdef ndarray[double, ndim=2] forces = numpy.zeros((nCoords, 3))
cdef ndarray[double, ndim=3] regions_1 = numpy.zeros((1+nCoords/s0, 3, 2)) # Large bounding boxes
cdef ndarray[double, ndim=4] regions_2 = numpy.zeros((1+nCoords/s0, s2/s1, 3, 2)) # Small bounding boxes
cdef ndarray[int, ndim=1] idx_1 = numpy.zeros(len(regions_1), numpy.int32)
cdef ndarray[int, ndim=2] idx_2 = numpy.zeros((len(regions_1), s1), numpy.int32)
cdef ndarray[long, ndim=2] rep_list = numpy.empty((n_rep_max, 2), numpy.int64)
if nCoords < 2:
raise NucCythonError('Too few coodinates')
indices = set(rest_indices.ravel())
if min(indices) < 0:
raise NucCythonError('Restraint index negative')
if max(indices) >= nCoords:
data = (max(indices), nCoords)
raise NucCythonError('Restraint index "%d" out of bounds (> %d)' % data)
if nCoords != len(masses):
raise NucCythonError('Masses list size does not match coordinates')
if nRest != len(rest_limits):
raise NucCythonError('Number of restraint index pairs does not match number of restraint limits')
tStep0 = tStep * tot0
beta /= tot0
veloc *= sqrt(tRef / getTemp(masses, veloc, nCoords))
for i, m in enumerate(masses):
if m == INFINITY:
veloc[i] = 0
for step in range(nSteps):
if step == 0:
nRep, n_rep_found = getRepulsionList(rep_list, coords, regions_1, regions_2, idx_1, idx_2,
s1, s2, nCoords, n_rep_max, rep_dists, radii, max_radius)
if n_rep_found > n_rep_max:
#print "Adjust A", nRep, n_rep_found, n_rep_max
n_rep_max = numpy.int32(min(n_rep_found * 1.2, 100000000))
rep_list = numpy.zeros((n_rep_max, 2), numpy.int64)
nRep, n_rep_found = getRepulsionList(rep_list, coords, regions_1, regions_2, idx_1, idx_2,
s1, s2, nCoords, n_rep_max, rep_dists, radii, max_radius)
for i in range(nCoords):
coordsPrev[i,0] = coords[i,0]
coordsPrev[i,1] = coords[i,1]
coordsPrev[i,2] = coords[i,2]
forces[i,0] = 0.0
forces[i,1] = 0.0
forces[i,2] = 0.0
fRep = getRepulsiveForce(rep_list, forces, coords, nRep, fConstR, radii)
fDist = getRestraintForce(forces, coords, rest_indices, rest_limits, rest_weight, rest_ambig, fConstD)
for i in range(nCoords):
accel[i,0] = forces[i,0] / masses[i]
accel[i,1] = forces[i,1] / masses[i]
accel[i,2] = forces[i,2] / masses[i]
else:
maxDelta = 0.0
for i in range(nCoords):
dx = coords[i,0] - coordsPrev[i,0]
dy = coords[i,1] - coordsPrev[i,1]
dz = coords[i,2] - coordsPrev[i,2]
d2 = dx*dx + dy*dy + dz*dz
if d2 > maxDelta:
maxDelta = d2
if maxDelta > delta_lim[i]:
break
if maxDelta > delta_lim.min():
nRep, n_rep_found = getRepulsionList(rep_list, coords, regions_1, regions_2, idx_1, idx_2,
s1, s2, nCoords, n_rep_max, rep_dists, radii, max_radius) # Handle errors
if n_rep_found > n_rep_max:
#print "Adjust B", nRep, n_rep_found, n_rep_max
n_rep_max = numpy.int32(min(n_rep_found * 1.2, 100000000))
rep_list = numpy.zeros((n_rep_max, 2), numpy.int64)
for i in range(nCoords):
coordsPrev[i,0] = coords[i,0]
coordsPrev[i,1] = coords[i,1]
coordsPrev[i,2] = coords[i,2]
updateMotion(masses, forces, accel, veloc, coords, nCoords, tRef, tStep0, beta)
for i in range(nCoords):
forces[i,0] = 0.0
forces[i,1] = 0.0
forces[i,2] = 0.0
fRep = getRepulsiveForce(rep_list, forces, coords, nRep, fConstR, radii)
fDist = getRestraintForce(forces, coords, rest_indices, rest_limits,
rest_weight, rest_ambig, fConstD)
updateVelocity(masses, forces, accel, veloc, nCoords, tRef, tStep0, beta)
if (print_interval > 0) and step % print_interval == 0:
temp = getTemp(masses, veloc, nCoords)
nViol, rmsd = getStats(rest_indices, rest_limits, coords, nRest)
data = (tRef/(bead_size*bead_size), temp/(bead_size*bead_size), fRep, fDist, rmsd, nViol, nRep, time.time()-t0)
print('ttemp:%5d temp:%5d fRep:%7.2e fDist:%7.2e rmsd:%7.2lf nViol:%5d nRep:%7d etime:%5.2f' % data)
sys.stdout.flush()
time_taken += tStep
return time_taken, n_rep_found