-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
281 lines (235 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : [email protected]
@File : train.py
@Time : 8/4/19 3:36 PM
@Desc :
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import json
import timeit
import argparse
import torch
import torch.optim as optim
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils import data
import networks
import utils.schp as schp
from datasets.datasets import LIPDataSet
from datasets.target_generation import generate_edge_tensor
from utils.transforms import BGR2RGB_transform
from utils.criterion import CriterionAll
from utils.encoding import DataParallelModel, DataParallelCriterion
from utils.warmup_scheduler import SGDRScheduler
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
# Network Structure
parser.add_argument("--arch", type=str, default='resnet101')
# Data Preference
parser.add_argument("--data-dir", type=str, default='/home/xianzhe.xxz/datasets/HumanParsing/LIP')
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--input-size", type=str, default='473,473')
parser.add_argument("--num-classes", type=int, default=20)
parser.add_argument("--ignore-label", type=int, default=255)
parser.add_argument("--random-mirror", action="store_true")
parser.add_argument("--random-scale", action="store_true")
# Training Strategy
parser.add_argument("--learning-rate", type=float, default=7e-3)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--weight-decay", type=float, default=5e-4)
parser.add_argument("--gpu", type=str, default='0,1,2')
parser.add_argument("--start-epoch", type=int, default=0)
parser.add_argument("--epochs", type=int, default=150)
parser.add_argument("--eval-epochs", type=int, default=10)
parser.add_argument("--imagenet-pretrain", type=str, default='./pretrain_model/resnet101-imagenet.pth')
parser.add_argument("--log-dir", type=str, default='./log')
parser.add_argument("--model-restore", type=str, default='./log/checkpoint.pth.tar')
parser.add_argument("--schp-start", type=int, default=100, help='schp start epoch')
parser.add_argument("--cycle-epochs", type=int, default=10, help='schp cyclical epoch')
parser.add_argument("--schp-restore", type=str, default='./log/schp_checkpoint.pth.tar')
parser.add_argument("--lambda-s", type=float, default=1, help='segmentation loss weight')
parser.add_argument("--lambda-e", type=float, default=1, help='edge loss weight')
parser.add_argument("--lambda-c", type=float, default=0.1, help='segmentation-edge consistency loss weight')
parser.add_argument("--syncbn", action="store_true", help='use syncbn or not')
parser.add_argument("--imagenet", action="store_true", help='use syncbn or not')
parser.add_argument("--optimizer", type=str, default='sgd', help='which optimizer to use')
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--warmup_epochs", type=int, default=10)
parser.add_argument("--lr_divider", type=int, default=100)
parser.add_argument("--cyclelr_divider", type=int, default=2)
return parser.parse_args()
def main():
args = get_arguments()
local_rank = args.local_rank
start_epoch = 0
cycle_n = 0
if not os.path.exists(args.log_dir):
if local_rank == 0:
os.makedirs(args.log_dir)
if local_rank == 0:
with open(os.path.join(args.log_dir, 'args.json'), 'w') as opt_file:
json.dump(vars(args), opt_file)
print(args)
#gpus = [int(i) for i in args.gpu.split(',')]
#if not args.gpu == 'None':
# os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
dist.init_process_group(backend='nccl')
device = torch.device("cuda", local_rank)
torch.cuda.set_device(device)
input_size = list(map(int, args.input_size.split(',')))
cudnn.enabled = True
cudnn.benchmark = True
# Model Initialization
if args.imagenet:
convert_weights = True
else:
convert_weights = False
model = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain, convert_weights=convert_weights)
for name, param in model.named_parameters():
#if name.startswith("backbone.patch_embed"):
if "patch_embed" in name:
print(name)
param.requires_grad = False
IMAGE_MEAN = model.mean
IMAGE_STD = model.std
INPUT_SPACE = model.input_space
restore_from = args.model_restore
if os.path.exists(restore_from):
print('Resume training from {}'.format(restore_from))
checkpoint = torch.load(restore_from, map_location='cpu')
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
model.to(device)
if args.syncbn:
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
schp_model = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain, convert_weights=convert_weights)
#for name, param in schp_model.named_parameters():
#if name.startswith("backbone.patch_embed"):
# if "patch_embed" in name:
# param.requires_grad = False
if os.path.exists(args.schp_restore):
print('Resuming schp checkpoint from {}'.format(args.schp_restore))
schp_checkpoint = torch.load(args.schp_restore, map_location='cpu')
schp_model_state_dict = schp_checkpoint['state_dict']
cycle_n = schp_checkpoint['cycle_n']
schp_model.load_state_dict(schp_model_state_dict)
schp_model.to(device)
if args.syncbn:
print('----use syncBN in model!----')
schp_model = nn.SyncBatchNorm.convert_sync_batchnorm(schp_model)
schp_model = DDP(schp_model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
# Loss Function
criterion = CriterionAll(lambda_1=args.lambda_s, lambda_2=args.lambda_e, lambda_3=args.lambda_c,
num_classes=args.num_classes)
#criterion = DataParallelCriterion(criterion)
#criterion.to(device)
# Data Loader
if INPUT_SPACE == 'BGR':
print('BGR Transformation')
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
elif INPUT_SPACE == 'RGB':
print('RGB Transformation')
transform = transforms.Compose([
transforms.ToTensor(),
BGR2RGB_transform(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
train_dataset = LIPDataSet(args.data_dir, 'train', crop_size=input_size, transform=transform)
dist_sampler = data.distributed.DistributedSampler(train_dataset, shuffle=True)
train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, sampler=dist_sampler,
num_workers=8, pin_memory=False, drop_last=True)
print('Total training samples: {}'.format(len(train_dataset)))
# Optimizer Initialization
if args.optimizer == 'sgd':
print("using SGD optimizer")
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.learning_rate, momentum=args.momentum,
weight_decay=args.weight_decay)
elif args.optimizer == 'adam':
print("using Adam optimizer")
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.learning_rate, weight_decay=args.weight_decay)
# Original warmup_epoch=10, changed to 3 for fix backbone finetune
lr_scheduler = SGDRScheduler(optimizer, total_epoch=args.epochs,
eta_min=args.learning_rate / args.lr_divider, warmup_epoch=args.warmup_epochs,
start_cyclical=args.schp_start, cyclical_base_lr=args.learning_rate / args.cyclelr_divider,
cyclical_epoch=args.cycle_epochs)
total_iters = args.epochs * len(train_loader)
start = timeit.default_timer()
iter_start = timeit.default_timer()
model.train()
for epoch in range(start_epoch, args.epochs):
dist_sampler.set_epoch(epoch)
lr = lr_scheduler.get_lr()[0]
for i_iter, batch in enumerate(train_loader):
i_iter += len(train_loader) * epoch
images, labels, _ = batch
#labels = labels.cuda(non_blocking=True)
labels = labels.to(device)
edges = generate_edge_tensor(labels)
labels = labels.type(torch.cuda.LongTensor)
edges = edges.type(torch.cuda.LongTensor)
# for name, param in model.named_parameters():
# print(name,': ', param.requires_grad)
#print('fixed', model.state_dict()['module.conv1.weight'][0,0,0,0])
#print('update', model.state_dict()['module.decoder.conv4.weight'][0,0,0,0])
preds = model(images)
# Online Self Correction Cycle with Label Refinement
if cycle_n >= 1:
with torch.no_grad():
soft_preds = schp_model(images)
soft_fused_preds = soft_preds[0][-1]
soft_edges = soft_preds[1][-1]
soft_preds = soft_fused_preds
else:
soft_preds = None
soft_edges = None
loss = criterion(preds, [labels, edges, soft_preds, soft_edges], cycle_n)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if local_rank == 0 and i_iter % 100 == 0:
print('iter = {} of {} completed, lr = {}, loss = {}, time = {}'.format(i_iter, total_iters, lr,
loss.data.cpu().numpy(), (timeit.default_timer()-iter_start)/100))
iter_start = timeit.default_timer()
lr_scheduler.step()
if local_rank == 0 and (epoch + 1) % (args.eval_epochs) == 0:
schp.save_schp_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
}, False, args.log_dir, filename='checkpoint_{}.pth.tar'.format(epoch + 1))
# Self Correction Cycle with Model Aggregation
if (epoch + 1) >= args.schp_start and (epoch + 1 - args.schp_start) % args.cycle_epochs == 0:
print('Self-correction cycle number {}'.format(cycle_n))
schp.moving_average(schp_model, model, 1.0 / (cycle_n + 1))
cycle_n += 1
schp.bn_re_estimate(train_loader, schp_model)
if local_rank == 0:
schp.save_schp_checkpoint({
'state_dict': schp_model.state_dict(),
'cycle_n': cycle_n,
}, False, args.log_dir, filename='schp_{}_checkpoint.pth.tar'.format(cycle_n))
torch.cuda.empty_cache()
end = timeit.default_timer()
print('epoch = {} of {} completed using {} s'.format(epoch, args.epochs,
(end - start) / (epoch - start_epoch + 1)))
end = timeit.default_timer()
print('Training Finished in {} seconds'.format(end - start))
if __name__ == '__main__':
main()