-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_online.py
234 lines (192 loc) · 8.18 KB
/
eval_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from collections import defaultdict
import gym
import numpy as np
import argparse
import os
import torch
import wandb
from typing import Any, Tuple, Dict, List
from utils.vec_env.subproc_vec_env import VecEnv, SubprocVecEnv
from policies.policy import Policy
from pathlib import Path
from utils.wandb import get_run_from_folder, get_policy_paths_from_folder
from multiprocessing import Process, connection, Queue
from envs.core import create_env
from tqdm import tqdm
from algs.core import load_alg_policy
def eval_online(
policy_path: Path,
env_name: str,
alg_name: str,
device: torch.device,
result_holder: Queue,
n_workers: int = 4,
n_trajectories: int = 1000
) -> float:
# Load the policy
policy = load_alg_policy(alg_name=alg_name, env_name=env_name, policy_path=policy_path)
policy.to(device)
# Create vectorized environment
env = SubprocVecEnv(env_fns=[lambda: create_env(env_name) for _ in range(n_workers)])
# Start collecting trajectories and computing vs0
states = env.reset()
n_envs = len(states)
n_collected = 0
env_rewards: Dict[int, List[float]] = defaultdict(list)
s0_values = []
while n_collected < n_trajectories:
actions = policy.predict_actions(states)
nstates, rewards, _, infos = env.step(actions)
# Log
for env_ind in range(n_envs):
terminated = "terminal_observation" in infos[env_ind]
env_rewards[env_ind].append(rewards[env_ind])
if terminated:
n_collected += 1
s0_values.append(np.sum(env_rewards[env_ind]))
env_rewards[env_ind] = []
# Update states
states = nstates
# Clean up
env.close()
# Put on a result
result_holder.put(np.mean(s0_values))
def get_evaluation_process(
job: Dict[str, Any],
device: torch.device
) -> Tuple[Process, Queue]:
result_holder = Queue()
return Process(
target=eval_online,
kwargs={
"policy_path" : job["policy_path"],
"env_name" : job["env_name"],
"alg_name" : job["alg"],
"n_trajectories": job["n_trajectories"],
"n_workers" : job["n_workers"],
"device" : device,
"result_holder" : result_holder
}
), result_holder
DEFAULT_N_TRAJECTORIES = {
"industrial": 100,
"finrl" : 5,
"citylearn" : 200
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--envs", type=str, nargs="+", default=["four-room", "industrial", "citylearn", "finrl"], help="For which environments start online evaluation.")
parser.add_argument("--algs", type=str, nargs="+", default=["cql", "td3+bc", "bc", "fisherbrc", "crr"])
parser.add_argument("--levels", type=str, nargs="+", default=["low", "medium", "high"])
parser.add_argument("--n_workers", type=int, default=4, help="How many environments per device.")
parser.add_argument("--devices", type=str, nargs="+", default=["cpu"])
parser.add_argument("--n_trajectories", type=int, default=1000, help="How many rollouts per policy.")
parser.add_argument("--strategy", type=str, default="40", choices=["last", "all", "40"])
parser.add_argument("--wandb_entity", type=str, default="vkurenkov")
parser.add_argument("--wandb_project_name", type=str, default="offline-rl-baseline")
parser.add_argument("--force", default=False, type=bool)
args = parser.parse_args()
# Some fixes for MacOS and wandb logging
os.environ['KMP_DUPLICATE_LIB_OK'] = "True"
os.environ["WANDB_SILENT"] = "True"
### Parse all the wandb runs to prepare evaluation jobs ###
eval_jobs = []
wandb_path = Path(os.path.join(os.environ["WANDB_PATH"], "wandb"))
subfolders = [f for f in os.scandir(wandb_path) if f.is_dir()]
wandb_api = wandb.Api()
for folder in tqdm(subfolders, desc="Parsing local wandb folders"):
# Skip latest-run folder
if folder.name == "latest-run":
continue
# Parse wandb run from this folder
run = get_run_from_folder(
folder_name=folder.name,
entity=args.wandb_entity,
project_name=args.wandb_project_name,
wandb_api=wandb_api
)
# This run is not on the sever thus skip
if not run:
continue
# If not in the target envs -- skip
if "env" not in run.config or run.config["env"] not in args.envs:
continue
if "policy_level" not in run.config or run.config["policy_level"] not in args.levels:
continue
if "alg" not in run.config or run.config["alg"] not in args.algs:
continue
# If the training is still running or crushed -- skip
if run.state != "finished":
continue
# Extract paths to each policy and add jobs
policies = get_policy_paths_from_folder(folder_path=folder.path)
# Only if the last policy needs to be evaluated
if args.strategy == "last" or args.strategy == "40":
policies = [policies[-1]]
# Add evaluation jobs
for (policy_path, epoch) in policies:
# If the target performance metric is already calculated -- skip
key_name = f"epoch_{epoch}/online_vs0"
if key_name in run.summary and not args.force:
continue
# Only 40th epoch....
if args.strategy == "40" and epoch != 40:
continue
eval_jobs.append({
"policy_path" : policy_path,
"epoch" : epoch,
"env_name" : run.config["env"],
"n_trajectories": DEFAULT_N_TRAJECTORIES[run.config["env"]],
"n_workers" : args.n_workers,
"run" : run,
"alg" : run.config["alg"]
})
print(f"{len(eval_jobs)} jobs to be run on {len(args.devices)} devices.")
### Run the evaluation jobs ###
n_workers = len(args.devices)
pool = []
for job, device in zip(eval_jobs, args.devices):
eval_prc, eval_res = get_evaluation_process(job=job, device=device)
pool.append((eval_prc, eval_res, device, job))
n_jobs_run = len(args.devices)
# Run the first batch of jobs
for process, _, _, _ in pool:
process.start()
# Progress bar
pbar = tqdm(total=len(eval_jobs), desc="Running evaluation jobs")
# Run all others
while n_jobs_run < len(eval_jobs):
# Wait until one of the processes is over
connection.wait(process.sentinel for process, _, _ , _ in pool)
# Check which of the processes has terminated and released its device
for ind in range(len(pool)):
cur_process = pool[ind][0]
cur_res = pool[ind][1]
cur_device = pool[ind][2]
cur_job = pool[ind][3]
# The job has been completed -- run a new one if needed
if not cur_process.is_alive() and n_jobs_run < len(eval_jobs):
# Retrieve the result
vs0 = cur_res.get()
# Close this process
cur_process.join()
# Log the result into wandb
cur_job["run"].summary[f"epoch_{cur_job['epoch']}/online_vs0"] = vs0
cur_job["run"].summary.update()
# Run a new one
new_job = eval_jobs[n_jobs_run]
eval_prc, eval_res = get_evaluation_process(job=new_job, device=cur_device)
pool[ind] = (eval_prc, eval_res, cur_device, new_job)
pool[ind][0].start()
n_jobs_run += 1
pbar.update(n=1)
# Clean up
for process, cur_res, _, cur_job in pool:
# Retrieve the result
vs0 = cur_res.get()
# Close this process
process.join()
# Log the result into wandb
cur_job["run"].summary[f"epoch_{cur_job['epoch']}/online_vs0"] = vs0
cur_job["run"].summary.update()
pbar.update(1)