From c42a2e1abf5dd2630118c1191f97cb344c615802 Mon Sep 17 00:00:00 2001 From: timothyas Date: Fri, 27 Oct 2023 14:11:36 -0600 Subject: [PATCH] init rtd yaml --- .readthedocs.yaml | 32 ++++++++++++++++++++++++++++++++ docs/source/index.rst | 9 +++++++++ docs/source/references.rst | 3 +++ 3 files changed, 44 insertions(+) create mode 100644 .readthedocs.yaml diff --git a/.readthedocs.yaml b/.readthedocs.yaml new file mode 100644 index 0000000..d69d7c2 --- /dev/null +++ b/.readthedocs.yaml @@ -0,0 +1,32 @@ +# .readthedocs.yaml +# Read the Docs configuration file +# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details + +# Required +version: 2 + +# Set the OS, Python version and other tools you might need +build: + os: ubuntu-22.04 + tools: + python: "3.12" + # You can also specify other tool versions: + # nodejs: "19" + # rust: "1.64" + # golang: "1.19" + +# Build documentation in the "docs/" directory with Sphinx +sphinx: + configuration: docs/conf.py + +# Optionally build your docs in additional formats such as PDF and ePub +# formats: +# - pdf +# - epub + +# Optional but recommended, declare the Python requirements required +# to build your documentation +# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html +# python: +# install: +# - requirements: docs/requirements.txt diff --git a/docs/source/index.rst b/docs/source/index.rst index b2f2b21..5334e42 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -6,6 +6,15 @@ xesn Documentation ================== +**xesn** is a python package for implementing Echo State Networks (ESNs), a +particular form of Reservoir Computing originally discovered by +[Jaeger_2001]_. +The implementation makes use of +`numpy `_ and +`scipy `_ for an efficient implementation on CPUs, +and `cupy `_ for GPUs. + + .. toctree:: :maxdepth: 1 diff --git a/docs/source/references.rst b/docs/source/references.rst index 89350b6..f7e11e8 100644 --- a/docs/source/references.rst +++ b/docs/source/references.rst @@ -3,6 +3,9 @@ References .. [Arcomano_et_al_2020] Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., & Ott, E. (2020). A Machine Learning-Based Global Atmospheric Forecast Model. Geophysical Research Letters, 47(9), e2020GL087776. https://doi.org/10.1029/2020GL087776 +.. [Jaeger_2001] Jaeger, H. (2001). The "echo state” approach to analysing and training recurrent neural networks – with an Erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, 148(34), 13. + + .. [Pathak_et_al_2018] Pathak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Physical Review Letters, 120(2), 024102. https://doi.org/10.1103/PhysRevLett.120.024102 .. [Smith_et_al_2023] Smith, T. A., Penny, S. G., Platt, J. A., & Chen, T.-C. (2023, September 21). Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural Network Emulators of Geophysical Turbulence. arXiv. Retrieved from http://arxiv.org/abs/2305.00100