diff --git a/.readthedocs.yaml b/.readthedocs.yaml
new file mode 100644
index 0000000..d69d7c2
--- /dev/null
+++ b/.readthedocs.yaml
@@ -0,0 +1,32 @@
+# .readthedocs.yaml
+# Read the Docs configuration file
+# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
+
+# Required
+version: 2
+
+# Set the OS, Python version and other tools you might need
+build:
+ os: ubuntu-22.04
+ tools:
+ python: "3.12"
+ # You can also specify other tool versions:
+ # nodejs: "19"
+ # rust: "1.64"
+ # golang: "1.19"
+
+# Build documentation in the "docs/" directory with Sphinx
+sphinx:
+ configuration: docs/conf.py
+
+# Optionally build your docs in additional formats such as PDF and ePub
+# formats:
+# - pdf
+# - epub
+
+# Optional but recommended, declare the Python requirements required
+# to build your documentation
+# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
+# python:
+# install:
+# - requirements: docs/requirements.txt
diff --git a/docs/source/index.rst b/docs/source/index.rst
index b2f2b21..5334e42 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -6,6 +6,15 @@
xesn Documentation
==================
+**xesn** is a python package for implementing Echo State Networks (ESNs), a
+particular form of Reservoir Computing originally discovered by
+[Jaeger_2001]_.
+The implementation makes use of
+`numpy `_ and
+`scipy `_ for an efficient implementation on CPUs,
+and `cupy `_ for GPUs.
+
+
.. toctree::
:maxdepth: 1
diff --git a/docs/source/references.rst b/docs/source/references.rst
index 89350b6..f7e11e8 100644
--- a/docs/source/references.rst
+++ b/docs/source/references.rst
@@ -3,6 +3,9 @@ References
.. [Arcomano_et_al_2020] Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., & Ott, E. (2020). A Machine Learning-Based Global Atmospheric Forecast Model. Geophysical Research Letters, 47(9), e2020GL087776. https://doi.org/10.1029/2020GL087776
+.. [Jaeger_2001] Jaeger, H. (2001). The "echo state” approach to analysing and training recurrent neural networks – with an Erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, 148(34), 13.
+
+
.. [Pathak_et_al_2018] Pathak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Physical Review Letters, 120(2), 024102. https://doi.org/10.1103/PhysRevLett.120.024102
.. [Smith_et_al_2023] Smith, T. A., Penny, S. G., Platt, J. A., & Chen, T.-C. (2023, September 21). Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural Network Emulators of Geophysical Turbulence. arXiv. Retrieved from http://arxiv.org/abs/2305.00100