Skip to content

Commit

Permalink
Simplify MRI with EEG example
Browse files Browse the repository at this point in the history
  • Loading branch information
timhoffm committed Jul 22, 2023
1 parent ee723d9 commit 1e0c0bd
Showing 1 changed file with 21 additions and 36 deletions.
57 changes: 21 additions & 36 deletions galleries/examples/specialty_plots/mri_with_eeg.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,26 +11,30 @@
import numpy as np

import matplotlib.cbook as cbook
import matplotlib.cm as cm
from matplotlib.collections import LineCollection

fig = plt.figure("MRI_with_EEG")
fig, axd = plt.subplot_mosaic(
[["image", "density"],
["EEG", "EEG"]],
layout="constrained",
# "image" will contain a square image. We fine-tune the width so that
# there is no excess horizontal or vertical margin around the image.
width_ratios=[1.05, 2],
)

# Load the MRI data (256x256 16-bit integers)
with cbook.get_sample_data('s1045.ima.gz') as dfile:
im = np.frombuffer(dfile.read(), np.uint16).reshape((256, 256))

# Plot the MRI image
ax0 = fig.add_subplot(2, 2, 1)
ax0.imshow(im, cmap=cm.gray)
ax0.axis('off')
axd["image"].imshow(im, cmap="gray")
axd["image"].axis('off')

# Plot the histogram of MRI intensity
ax1 = fig.add_subplot(2, 2, 2)
im = im[im.nonzero()] # Ignore the background
ax1.hist(im, bins=np.arange(0, 2**16+1, 512))
ax1.set(xlabel='Intensity (a.u.)', ylabel='MRI density', yticks=[])
ax1.minorticks_on()
axd["density"].hist(im, bins=np.arange(0, 2**16+1, 512))
axd["density"].set(xlabel='Intensity (a.u.)', xlim=(0, 2**16),
ylabel='MRI density', yticks=[])
axd["density"].minorticks_on()

# Load the EEG data
n_samples, n_rows = 800, 4
Expand All @@ -39,32 +43,13 @@
t = 10 * np.arange(n_samples) / n_samples

# Plot the EEG
ticklocs = []
ax2 = fig.add_subplot(2, 1, 2)
ax2.set_xlim(0, 10)
ax2.set_xticks(np.arange(10))
dmin = data.min()
dmax = data.max()
dr = (dmax - dmin) * 0.7 # Crowd them a bit.
y0 = dmin
y1 = (n_rows - 1) * dr + dmax
ax2.set_ylim(y0, y1)
axd["EEG"].set_xlabel('Time (s)')
axd["EEG"].set_xlim(0, 10)
dy = (data.min() - data.max()) * 0.7 # Crowd them a bit.
axd["EEG"].set_ylim(-dy, n_rows * dy)
axd["EEG"].set_yticks([0, dy, 2*dy, 3*dy], labels=['PG3', 'PG5', 'PG7', 'PG9'])

segs = []
for i in range(n_rows):
segs.append(np.column_stack((t, data[:, i])))
ticklocs.append(i * dr)
for i, data_col in enumerate(data.T):
axd["EEG"].plot(t, data_col + i*dy, color="C0")

offsets = np.zeros((n_rows, 2), dtype=float)
offsets[:, 1] = ticklocs

lines = LineCollection(segs, offsets=offsets, offset_transform=None)
ax2.add_collection(lines)

# Set the yticks to use axes coordinates on the y-axis
ax2.set_yticks(ticklocs, labels=['PG3', 'PG5', 'PG7', 'PG9'])

ax2.set_xlabel('Time (s)')

plt.tight_layout()
plt.show()

0 comments on commit 1e0c0bd

Please sign in to comment.