-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathrefine_variational.cpp
344 lines (288 loc) · 13.8 KB
/
refine_variational.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#include <iostream>
#include <string>
#include <vector>
#include <valarray>
#include <thread>
#include <Eigen/Core>
#include <Eigen/LU>
#include <Eigen/Dense>
#include <stdio.h>
#include "refine_variational.h"
using std::cout;
using std::endl;
using std::vector;
namespace OFC
{
VarRefClass::VarRefClass(const float * im_ao_in, const float * im_ao_dx_in, const float * im_ao_dy_in,
const float * im_bo_in, const float * im_bo_dx_in, const float * im_bo_dy_in,
const camparam* cpt_in,const camparam* cpo_in,const optparam* op_in, float *flowout)
: cpt(cpt_in), cpo(cpo_in), op(op_in)
{
// initialize parameters
tvparams.alpha = op->tv_alpha;
tvparams.beta = 0.0f; // for matching term, not needed for us
tvparams.gamma = op->tv_gamma;
tvparams.delta = op->tv_delta;
tvparams.n_inner_iteration = op->tv_innerit * (cpt->curr_lv+1);
tvparams.n_solver_iteration = op->tv_solverit;//5;
tvparams.sor_omega = op->tv_sor;
tvparams.tmp_quarter_alpha = 0.25f*tvparams.alpha;
tvparams.tmp_half_gamma_over3 = tvparams.gamma*0.5f/3.0f;
tvparams.tmp_half_delta_over3 = tvparams.delta*0.5f/3.0f;
tvparams.tmp_half_beta = tvparams.beta*0.5f;
float deriv_filter[3] = {0.0f, -8.0f/12.0f, 1.0f/12.0f};
deriv = convolution_new(2, deriv_filter, 0);
float deriv_filter_flow[2] = {0.0f, -0.5f};
deriv_flow = convolution_new(1, deriv_filter_flow, 0);
// copy flow initialization into FV structs
#if (SELECTMODE==1)
static int noparam = 2; // Optical flow
#else
static int noparam = 1; // Only horizontal displacements for stereo depth
#endif
std::vector<image_t*> flow_sep(noparam);
for (int i = 0; i < noparam; ++i )
flow_sep[i] = image_new(cpt->width,cpt->height);
for (int iy = 0; iy < cpt->height; ++iy)
for (int ix = 0; ix < cpt->width; ++ix)
{
int i = iy * cpt->width + ix;
int is = iy * flow_sep[0]->stride + ix;
for (int j = 0; j < noparam; ++j)
flow_sep[j]->c1[is] = flowout[i*noparam + j];
}
// copy image data into FV structs
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2)
image_t * im_ao, *im_bo;
im_ao = image_new(cpt->width,cpt->height);
im_bo = image_new(cpt->width,cpt->height);
#else
color_image_t * im_ao, *im_bo;
im_ao = color_image_new(cpt->width,cpt->height);
im_bo = color_image_new(cpt->width,cpt->height);
#endif
copyimage(im_ao_in, im_ao);
copyimage(im_bo_in, im_bo);
// Call solver
#if (SELECTMODE==1)
RefLevelOF(flow_sep[0], flow_sep[1], im_ao, im_bo);
#else
RefLevelDE(flow_sep[0], im_ao, im_bo);
#endif
// Copy flow result back
for (int iy = 0; iy < cpt->height; ++iy)
for (int ix = 0; ix < cpt->width; ++ix)
{
int i = iy * cpt->width + ix;
int is = iy * flow_sep[0]->stride + ix;
for (int j = 0; j < noparam; ++j)
flowout[i*noparam + j] = flow_sep[j]->c1[is];
}
// free FV structs
for (int i = 0; i < noparam; ++i )
image_delete(flow_sep[i]);
convolution_delete(deriv);
convolution_delete(deriv_flow);
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2)
image_delete(im_ao);
image_delete(im_bo);
#else
color_image_delete(im_ao);
color_image_delete(im_bo);
#endif
}
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2)
void VarRefClass::copyimage(const float* img, image_t * img_t)
#else
void VarRefClass::copyimage(const float* img, color_image_t * img_t)
#endif
{
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2)
const float * img_st = img + (cpt->tmp_w + 1 ) * (cpt->imgpadding); // remove image padding, start at first valid pixel
#else
const float * img_st = img + 3 * (cpt->tmp_w + 1 ) * (cpt->imgpadding);
#endif
for (int yi = 0; yi < cpt->height; ++yi)
{
for (int xi = 0; xi < cpt->width; ++xi, ++img_st)
{
int i = yi*img_t->stride+ xi;
img_t->c1[i] = (*img_st);
#if (SELECTCHANNEL==3)
++img_st; img_t->c2[i] = (*img_st);
++img_st; img_t->c3[i] = (*img_st);
#endif
}
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2)
img_st += 2 * cpt->imgpadding;
#else
img_st += 3 * 2 * cpt->imgpadding;
#endif
}
}
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2)
void VarRefClass::RefLevelOF(image_t *wx, image_t *wy, const image_t *im1, const image_t *im2)
#else
void VarRefClass::RefLevelOF(image_t *wx, image_t *wy, const color_image_t *im1, const color_image_t *im2)
#endif
{
int i_inner_iteration;
int width = wx->width;
int height = wx->height;
int stride = wx->stride;
image_t *du = image_new(width,height), *dv = image_new(width,height), // the flow increment
*mask = image_new(width,height), // mask containing 0 if a point goes outside image boundary, 1 otherwise
*smooth_horiz = image_new(width,height), *smooth_vert = image_new(width,height), // horiz: (i,j) contains the diffusivity coeff. from (i,j) to (i+1,j)
*uu = image_new(width,height), *vv = image_new(width,height), // flow plus flow increment
*a11 = image_new(width,height), *a12 = image_new(width,height), *a22 = image_new(width,height), // system matrix A of Ax=b for each pixel
*b1 = image_new(width,height), *b2 = image_new(width,height); // system matrix b of Ax=b for each pixel
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2) // use single band image
image_t *w_im2 = image_new(width,height), // warped second image
*Ix = image_new(width,height), *Iy = image_new(width,height), *Iz = image_new(width,height), // first order derivatives
*Ixx = image_new(width,height), *Ixy = image_new(width,height), *Iyy = image_new(width,height), *Ixz = image_new(width,height), *Iyz = image_new(width,height); // second order derivatives
#else // use RGB image
color_image_t *w_im2 = color_image_new(width,height), // warped second image
*Ix = color_image_new(width,height), *Iy = color_image_new(width,height), *Iz = color_image_new(width,height), // first order derivatives
*Ixx = color_image_new(width,height), *Ixy = color_image_new(width,height), *Iyy = color_image_new(width,height), *Ixz = color_image_new(width,height), *Iyz = color_image_new(width,height); // second order derivatives
#endif
// warp second image
image_warp(w_im2, mask, im2, wx, wy);
// compute derivatives
get_derivatives(im1, w_im2, deriv, Ix, Iy, Iz, Ixx, Ixy, Iyy, Ixz, Iyz);
// erase du and dv
image_erase(du);
image_erase(dv);
// initialize uu and vv
memcpy(uu->c1,wx->c1,wx->stride*wx->height*sizeof(float));
memcpy(vv->c1,wy->c1,wy->stride*wy->height*sizeof(float));
// inner fixed point iterations
for(i_inner_iteration = 0 ; i_inner_iteration < tvparams.n_inner_iteration ; i_inner_iteration++)
{
// compute robust function and system
compute_smoothness(smooth_horiz, smooth_vert, uu, vv, deriv_flow, tvparams.tmp_quarter_alpha );
//compute_data_and_match(a11, a12, a22, b1, b2, mask, wx, wy, du, dv, uu, vv, Ix, Iy, Iz, Ixx, Ixy, Iyy, Ixz, Iyz, desc_weight, desc_flow_x, desc_flow_y, tvparams.tmp_half_delta_over3, tvparams.tmp_half_beta, tvparams.tmp_half_gamma_over3);
compute_data(a11, a12, a22, b1, b2, mask, wx, wy, du, dv, uu, vv, Ix, Iy, Iz, Ixx, Ixy, Iyy, Ixz, Iyz, tvparams.tmp_half_delta_over3, tvparams.tmp_half_beta, tvparams.tmp_half_gamma_over3);
sub_laplacian(b1, wx, smooth_horiz, smooth_vert);
sub_laplacian(b2, wy, smooth_horiz, smooth_vert);
// solve system
#ifdef WITH_OPENMP
sor_coupled_slow_but_readable(du, dv, a11, a12, a22, b1, b2, smooth_horiz, smooth_vert, tvparams.n_solver_iteration, tvparams.sor_omega); // slower but parallelized
#else
sor_coupled(du, dv, a11, a12, a22, b1, b2, smooth_horiz, smooth_vert, tvparams.n_solver_iteration, tvparams.sor_omega);
#endif
// update flow plus flow increment
int i;
v4sf *uup = (v4sf*) uu->c1, *vvp = (v4sf*) vv->c1, *wxp = (v4sf*) wx->c1, *wyp = (v4sf*) wy->c1, *dup = (v4sf*) du->c1, *dvp = (v4sf*) dv->c1;
for( i=0 ; i<height*stride/4 ; i++)
{
(*uup) = (*wxp) + (*dup);
(*vvp) = (*wyp) + (*dvp);
uup+=1; vvp+=1; wxp+=1; wyp+=1;dup+=1;dvp+=1;
}
}
// add flow increment to current flow
memcpy(wx->c1,uu->c1,uu->stride*uu->height*sizeof(float));
memcpy(wy->c1,vv->c1,vv->stride*vv->height*sizeof(float));
// free memory
image_delete(du); image_delete(dv);
image_delete(mask);
image_delete(smooth_horiz); image_delete(smooth_vert);
image_delete(uu); image_delete(vv);
image_delete(a11); image_delete(a12); image_delete(a22);
image_delete(b1); image_delete(b2);
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2) // use single band image
image_delete(w_im2);
image_delete(Ix); image_delete(Iy); image_delete(Iz);
image_delete(Ixx); image_delete(Ixy); image_delete(Iyy); image_delete(Ixz); image_delete(Iyz);
#else
color_image_delete(w_im2);
color_image_delete(Ix); color_image_delete(Iy); color_image_delete(Iz);
color_image_delete(Ixx); color_image_delete(Ixy); color_image_delete(Iyy); color_image_delete(Ixz); color_image_delete(Iyz);
#endif
}
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2)
void VarRefClass::RefLevelDE(image_t *wx, const image_t *im1, const image_t *im2)
#else
void VarRefClass::RefLevelDE(image_t *wx, const color_image_t *im1, const color_image_t *im2)
#endif
{
int i_inner_iteration;
int width = wx->width;
int height = wx->height;
int stride = wx->stride;
image_t *du = image_new(width,height), *wy_dummy = image_new(width,height), // the flow increment
*mask = image_new(width,height), // mask containing 0 if a point goes outside image boundary, 1 otherwise
*smooth_horiz = image_new(width,height), *smooth_vert = image_new(width,height), // horiz: (i,j) contains the diffusivity coeff. from (i,j) to (i+1,j)
*uu = image_new(width,height), // flow plus flow increment
*a11 = image_new(width,height), // system matrix A of Ax=b for each pixel
*b1 = image_new(width,height); // system matrix b of Ax=b for each pixel
image_erase(wy_dummy);
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2) // use single band image
image_t *w_im2 = image_new(width,height), // warped second image
*Ix = image_new(width,height), *Iy = image_new(width,height), *Iz = image_new(width,height), // first order derivatives
*Ixx = image_new(width,height), *Ixy = image_new(width,height), *Iyy = image_new(width,height), *Ixz = image_new(width,height), *Iyz = image_new(width,height); // second order derivatives
#else // use RGB image
color_image_t *w_im2 = color_image_new(width,height), // warped second image
*Ix = color_image_new(width,height), *Iy = color_image_new(width,height), *Iz = color_image_new(width,height), // first order derivatives
*Ixx = color_image_new(width,height), *Ixy = color_image_new(width,height), *Iyy = color_image_new(width,height), *Ixz = color_image_new(width,height), *Iyz = color_image_new(width,height); // second order derivatives
#endif
// warp second image
image_warp(w_im2, mask, im2, wx, wy_dummy);
// compute derivatives
get_derivatives(im1, w_im2, deriv, Ix, Iy, Iz, Ixx, Ixy, Iyy, Ixz, Iyz);
// erase du and dv
image_erase(du);
// initialize uu and vv
memcpy(uu->c1,wx->c1,wx->stride*wx->height*sizeof(float));
// inner fixed point iterations
for(i_inner_iteration = 0 ; i_inner_iteration < tvparams.n_inner_iteration ; i_inner_iteration++)
{
// compute robust function and system
compute_smoothness(smooth_horiz, smooth_vert, uu, wy_dummy, deriv_flow, tvparams.tmp_quarter_alpha );
compute_data_DE(a11, b1, mask, wx, du, uu, Ix, Iy, Iz, Ixx, Ixy, Iyy, Ixz, Iyz, tvparams.tmp_half_delta_over3, tvparams.tmp_half_beta, tvparams.tmp_half_gamma_over3);
sub_laplacian(b1, wx, smooth_horiz, smooth_vert);
// solve system
sor_coupled_slow_but_readable_DE(du, a11, b1, smooth_horiz, smooth_vert, tvparams.n_solver_iteration, tvparams.sor_omega);
// update flow plus flow increment
int i;
v4sf *uup = (v4sf*) uu->c1, *wxp = (v4sf*) wx->c1, *dup = (v4sf*) du->c1;
if(cpt->camlr==0) // check if right or left camera, needed to truncate values above/below zero
{
for( i=0 ; i<height*stride/4 ; i++)
{
(*uup) = __builtin_ia32_minps( (*wxp) + (*dup) , op->zero);
uup+=1; wxp+=1; dup+=1;
}
}
else
{
for( i=0 ; i<height*stride/4 ; i++)
{
(*uup) = __builtin_ia32_maxps( (*wxp) + (*dup) , op->zero);
uup+=1; wxp+=1; dup+=1;
}
}
}
// add flow increment to current flow
memcpy(wx->c1,uu->c1,uu->stride*uu->height*sizeof(float));
// free memory
image_delete(du); image_delete(wy_dummy);
image_delete(mask);
image_delete(smooth_horiz); image_delete(smooth_vert);
image_delete(uu);
image_delete(a11);
image_delete(b1);
#if (SELECTCHANNEL==1 | SELECTCHANNEL==2)
image_delete(w_im2);
image_delete(Ix); image_delete(Iy); image_delete(Iz);
image_delete(Ixx); image_delete(Ixy); image_delete(Iyy); image_delete(Ixz); image_delete(Iyz);
#else
color_image_delete(w_im2);
color_image_delete(Ix); color_image_delete(Iy); color_image_delete(Iz);
color_image_delete(Ixx); color_image_delete(Ixy); color_image_delete(Iyy); color_image_delete(Ixz); color_image_delete(Iyz);
#endif
}
VarRefClass::~VarRefClass()
{
}
}