-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgenerate_commands_dataset.py
94 lines (74 loc) · 3.96 KB
/
generate_commands_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Module to download the dataset.
import librosa
from data.strechableNumpyArray import StrechableNumpyArray
import numpy as np
import os
from data.ourLTFATStft import LTFATStft
import ltfatpy
from data.modGabPhaseGrad import modgabphasegrad
ltfatpy.gabphasegrad = modgabphasegrad # This function is not implemented for one sided stfts with the phase method on ltfatpy
import scipy.io
def load_data(pathToBaseDatasetFolder, folderNames):
dirs = [pathToBaseDatasetFolder+folderName for folderName in folderNames]
audios = StrechableNumpyArray()
i = 0
total = 0
for directory in dirs:
print(directory)
for file_name in os.listdir(directory):
if file_name.endswith('.wav'):
audio, sr = librosa.load(directory + '/' + file_name, sr=None, dtype=np.float64)
if len(audio) < 16000:
before = int(np.floor((16000-len(audio))/2))
after = int(np.ceil((16000-len(audio))/2))
audio = np.pad(audio, (before, after), 'constant', constant_values=(0, 0))
if np.sum(np.absolute(audio)) < len(audio)*1e-4:
continue
audios.append(audio[:16000])
i+=1
if i > 1000:
i -= 1000
total += 1000
print("Just loaded 1000 files! The total now is:", total)
print("Finished! I loaded", total+i, "audio files.")
audios = audios.finalize()
audios = np.reshape(audios, (total+i, len(audio))).astype(np.float64)
print("audios shape:", audios.shape)
return audios
clipBelow = -10
def generate_spectrograms_and_derivs_from(audio_signals):
fft_hop_size = 128
fft_window_length = 512
L = 16384
anStftWrapper = LTFATStft()
spectrograms = np.zeros([len(audio_signals), int(fft_window_length//2+1), int(L/fft_hop_size)], dtype=np.float64)
tgrads = np.zeros([len(audio_signals), int(fft_window_length//2+1), int(L/fft_hop_size)], dtype=np.float64)
fgrads = np.zeros([len(audio_signals), int(fft_window_length//2+1), int(L/fft_hop_size)], dtype=np.float64)
print("spectrograms shape:", spectrograms.shape)
gs = {'name': 'gauss', 'M': 512}
for index, audio_signal in enumerate(audio_signals):
realDGT = anStftWrapper.oneSidedStft(signal=audio_signal, windowLength=fft_window_length, hopSize=fft_hop_size)
spectrogram = anStftWrapper.logMagFromRealDGT(realDGT, clipBelow=np.e**clipBelow, normalize=True)
spectrograms[index] = spectrogram
tgradreal, fgradreal = ltfatpy.gabphasegrad('phase', np.angle(realDGT), fft_hop_size,
fft_window_length)
tgrads[index] = tgradreal /64
fgrads[index] = fgradreal /256
return spectrograms, tgrads, fgrads
def save_matrices(spectrograms, tgrads, fgrads):
nameForFile = 'data/test_spectrograms_and_derivs'
shiftedSpectrograms = spectrograms/(-clipBelow/2)+1
countPerFile = 4000 # mat files sadly cannot be arbitrarily large. 4000 works for 3 matrices (mag+tderiv+fderiv).
for index in range(1 + len(spectrograms)//countPerFile):
scipy.io.savemat(nameForFile + '_' + str(index+1) + '.mat', dict(logspecs=shiftedSpectrograms[index*countPerFile:(index+1)*countPerFile],
tgrad=tgrads[index*countPerFile:(index+1)*countPerFile],
fgrad=fgrads[index*countPerFile:(index+1)*countPerFile]))
if __name__ == '__main__':
pathToBaseDatasetFolder = 'data/sc09/'
folderNames = ['train', 'test', 'valid']
print('start loading the data')
audio_signals = load_data(pathToBaseDatasetFolder, folderNames)
print('compute spectrograms and derivs')
spectrograms, tgrads, fgrads = generate_spectrograms_and_derivs_from(audio_signals)
print('save everything')
save_matrices(spectrograms, tgrads, fgrads)