-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshow_return.py
306 lines (266 loc) · 12.2 KB
/
show_return.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""
Launcher for experiments with CSRO
"""
import os
import glob
from pathlib import Path
import numpy as np
import click
import json
import ast
import torch
import random
import multiprocessing as mp
from itertools import product
import sys
from tensorboardX import SummaryWriter
import numpy as np
np.int = int # 动态修复 np.int 被废弃的问题
mujoco_version = '200' # 默认版本
if '--mujoco_version' in sys.argv:
idx = sys.argv.index('--mujoco_version')
if idx + 1 < len(sys.argv):
mujoco_version = sys.argv[idx + 1].strip()
# 设置 MuJoCo 环境变量
if mujoco_version == '131':
os.environ['MUJOCO_PY_MJPRO_PATH'] = os.path.expanduser('~/.mujoco/mjpro131')
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{os.path.expanduser('~/.mujoco/mjpro131/bin')}:/usr/lib/nvidia"
elif mujoco_version == '200':
os.environ['MUJOCO_PY_MJPRO_PATH'] = '/home/autolab/.mujoco/mujoco200'
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:/home/autolab/.mujoco/mujoco200/bin:/usr/lib/nvidia"
else:
raise ValueError(f"Unsupported MuJoCo version: {mujoco_version}. Supported versions: '131', '200'")
print(f"MuJoCo version {mujoco_version} set successfully!")
from rlkit.envs import ENVS
from rlkit.envs.wrappers import NormalizedBoxEnv
from rlkit.torch.sac.policies import TanhGaussianPolicy
from rlkit.torch.multi_task_dynamics import MultiTaskDynamics
from rlkit.torch.networks import FlattenMlp, MlpEncoder, RecurrentEncoder, MlpDecoder
from rlkit.torch.sac.sac import CERTAINSoftActorCritic
from rlkit.torch.sac.agent import PEARLAgent
from rlkit.launchers.launcher_util import setup_logger
import rlkit.torch.pytorch_util as ptu
from configs.default import default_config
def global_seed(seed=0):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def experiment(gpu_id, variant, seed=None):
os.sched_setaffinity(0, [gpu_id*8+i for i in range(8)])
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
# create multi-task environment and sample tasks, normalize obs if provided with 'normalizer.npz'
if 'normalizer.npz' in os.listdir(variant['algo_params']['data_dir']):
obs_absmax = np.load(os.path.join(variant['algo_params']['data_dir'], 'normalizer.npz'))['abs_max']
env = NormalizedBoxEnv(ENVS[variant['env_name']](**variant['env_params']), obs_absmax=obs_absmax)
else:
env = NormalizedBoxEnv(ENVS[variant['env_name']](**variant['env_params']))
if seed is not None:
global_seed(seed)
env.seed(seed)
tasks = env.get_all_task_idx()
obs_dim = int(np.prod(env.observation_space.shape))
action_dim = int(np.prod(env.action_space.shape))
reward_dim = 1
# instantiate networks
latent_dim = variant['latent_size']
context_encoder_input_dim = 2 * obs_dim + action_dim + reward_dim if variant['algo_params']['use_next_obs_in_context'] else obs_dim + action_dim + reward_dim
context_encoder_output_dim = latent_dim * 2 if variant['algo_params']['use_information_bottleneck'] else latent_dim
net_size = variant['net_size']
recurrent = variant['algo_params']['recurrent']
encoder_model = RecurrentEncoder if recurrent else MlpEncoder
if variant['algo_params']['club_use_sa']:
club_input_dim = obs_dim + action_dim
else:
club_input_dim = obs_dim + action_dim + reward_dim if variant['algo_params']['use_next_obs_in_context'] else obs_dim + action_dim
club_model = encoder_model(
hidden_sizes=[200, 200, 200],
input_size=club_input_dim,
output_size=latent_dim * 2,
output_activation=torch.tanh,
)
context_encoder = encoder_model(
hidden_sizes=[200, 200, 200],
input_size=context_encoder_input_dim,
output_size=context_encoder_output_dim,
output_activation=torch.tanh,
layer_norm=variant['algo_params']['layer_norm'] if 'layer_norm' in variant['algo_params'].keys() else False
)
context_decoder = MlpDecoder(
hidden_sizes=[200, 200, 200],
input_size=latent_dim+obs_dim+action_dim,
output_size=2*(reward_dim+obs_dim) if variant['algo_params']['use_next_obs_in_context'] else 2*reward_dim,
layer_norm=variant['algo_params']['layer_norm'] if 'layer_norm' in variant['algo_params'].keys() else False
)
classifier = MlpDecoder(
hidden_sizes=[net_size],
input_size=context_encoder_output_dim,
output_size=variant['n_train_tasks'],
layer_norm=variant['algo_params']['layer_norm'] if 'layer_norm' in variant['algo_params'].keys() else False
)
uncertainty_mlp = MlpDecoder(
hidden_sizes=[net_size],
input_size=latent_dim,
output_size=1,
)
reward_models = torch.nn.ModuleList()
dynamic_models = torch.nn.ModuleList()
for _ in range(variant['algo_params']['num_ensemble']):
reward_models.append(
FlattenMlp(hidden_sizes=[net_size, net_size, net_size],
input_size=latent_dim + obs_dim + action_dim,
output_size=1, )
)
dynamic_models.append(
FlattenMlp(hidden_sizes=[net_size, net_size, net_size],
input_size=latent_dim + obs_dim + action_dim,
output_size=obs_dim, )
)
qf1 = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + action_dim + latent_dim,
output_size=1,
)
qf2 = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + action_dim + latent_dim,
output_size=1,
)
vf = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + latent_dim,
output_size=1,
)
c = FlattenMlp(
hidden_sizes=[net_size, net_size, net_size],
input_size=obs_dim + action_dim + latent_dim,
output_size=1
)
policy = TanhGaussianPolicy(
hidden_sizes=[net_size, net_size, net_size],
obs_dim=obs_dim + latent_dim,
latent_dim=latent_dim,
action_dim=action_dim,
)
agent = PEARLAgent(
latent_dim,
context_encoder,
uncertainty_mlp,
policy,
**variant['algo_params']
)
# Setting up tasks
if 'randomize_tasks' in variant.keys() and variant['randomize_tasks']:
train_tasks = np.random.choice(len(tasks), size=variant['n_train_tasks'], replace=False)
elif 'interpolation' in variant.keys() and variant['interpolation']:
step = len(tasks)/variant['n_train_tasks']
train_tasks = np.array([tasks[int(i*step)] for i in range(variant['n_train_tasks'])])
eval_tasks = np.array(list(set(range(len(tasks))).difference(train_tasks)))
goal_radius = variant['env_params']['goal_radius'] if 'goal_radius' in variant['env_params'] else 1
# Choose algorithm
algo_type = variant['algo_type']
algorithm = CERTAINSoftActorCritic(
env=env,
train_tasks=train_tasks,
eval_tasks=eval_tasks,
nets=[agent, qf1, qf2, vf, c, club_model, context_decoder, classifier, reward_models, dynamic_models],
latent_dim=latent_dim,
goal_radius=goal_radius,
seed=seed,
algo_type=algo_type,
env_name = variant['env_name'],
**variant['algo_params'],
)
ptu.set_gpu_mode(variant['util_params']['use_gpu'], variant['util_params']['gpu_id'])
DEBUG = False
os.environ['DEBUG'] = str(int(DEBUG))
exp_id = 'debug' if DEBUG else variant['util_params']['exp_name']
experiment_log_dir = setup_logger(
variant['env_name'],
variant=variant,
exp_id=exp_id,
base_log_dir=variant['util_params']['base_log_dir'],
seed=seed,
snapshot_mode="gap_and_last",
snapshot_gap=5
)
tensorboard_log_dir = experiment_log_dir + '/tensorboard'
Path(tensorboard_log_dir).mkdir(parents=True, exist_ok=True)
tb_writer = SummaryWriter(log_dir=tensorboard_log_dir)
# directory
exp_name = variant['util_params']['exp_name']
base_log_dir = variant['util_params']['base_log_dir']
exp_prefix = variant['env_name']
log_dir = Path(os.path.join(base_log_dir, exp_prefix.replace("_", "-"), exp_name, f"seed{seed}"))
file_list = glob.glob(os.path.join(log_dir, 'agent_*.pth'))
file_list.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
print(file_list)
for i, file in enumerate(file_list):
agent_ckpt = torch.load(str(file))
if variant['algo_params']['policy_update_strategy'] == 'BRAC':
algorithm.agent.policy.load_state_dict(agent_ckpt['policy'])
algorithm.agent.uncertainty_mlp.load_state_dict(agent_ckpt['uncertainty_mlp'])
algorithm.agent.context_encoder.load_state_dict(agent_ckpt['context_encoder'])
if ptu.gpu_enabled():
algorithm.to()
algorithm.show_return(tb_writer, 5 * i)
# # optionally save eval trajectories as pkl files
# if variant['algo_params']['dump_eval_paths']:
# pickle_dir = experiment_log_dir + '/eval_trajectories'
# Path(pickle_dir).mkdir(parents=True, exist_ok=True)
def deep_update_dict(fr, to):
''' update dict of dicts with new values '''
# assume dicts have same keys
for k, v in fr.items():
if type(v) is dict:
deep_update_dict(v, to[k])
else:
to[k] = v
return to
@click.command()
@click.argument('config', default=None)
@click.option('--mujoco_version', type=click.Choice(['131', '200'], case_sensitive=False), default='200', help='MuJoCo version, default is --mujoco_version=200')
@click.option('--gpu', default="0,1,2,3", type=str, help="Comma-separated list of gpu.")
@click.option('--seed', default="0", type=str, help="Comma-separated list of seeds.")
@click.option('--exp_name', default=None)
@click.option('--algo_type', type=click.Choice(['FOCAL', 'CSRO', 'CORRO', 'UNICORN', 'CLASSIFIER', 'IDAQ'], case_sensitive=False), default=None)
@click.option('--train_z0_policy', type=click.Choice(['true', 'false'], case_sensitive=False), default=None)
@click.option('--use_hvar', type=click.Choice(['true', 'false'], case_sensitive=False), default=None)
@click.option('--z_strategy', type=click.Choice(['mean', 'min', 'weighted', 'quantile'], case_sensitive=False), default=None)
@click.option('--r_thres', default=None)
# python show_return.py configs/point-robot.json --exp_name classifier_mix_z0_hvar_mean --gpu 5,6 --seed 0,3,4 --algo_type CLASSIFIER --z_strategy weighted --train_z0_policy true --use_hvar true
# python show_return.py configs/walker_rand_params.json --gpu 2,7 --seed 0,1,2,4 --exp_name classifier_mix_z0_hvar_p25_weighted --algo_type CLASSIFIER --train_z0_policy true --use_hvar true --z_strategy weighted --mujoco_version 131
def main(config, mujoco_version, gpu, seed, exp_name=None, algo_type=None, train_z0_policy = None, use_hvar = None, z_strategy = None, r_thres=None):
variant = default_config
if config:
with open(os.path.join(config)) as f:
exp_params = json.load(f)
variant = deep_update_dict(exp_params, variant)
gpu = [int(g) for g in gpu.split(",")]
print(f"Parsed gpus: {gpu}")
variant['util_params']['gpu_id'] = gpu
if not (exp_name == None):
variant['util_params']['exp_name'] = exp_name
variant['algo_params']['pretrain'] = True
if not (algo_type == None):
variant['algo_type'] = algo_type.upper()
if not (train_z0_policy == None):
variant['algo_params']['train_z0_policy'] = train_z0_policy.lower() == 'true'
if not (use_hvar == None):
variant['algo_params']['use_hvar'] = use_hvar.lower() == 'true'
if not (z_strategy == None):
variant['algo_params']['z_strategy'] = z_strategy
if not (r_thres == None):
variant['algo_params']['r_thres'] = float(r_thres)
seed = [int(s) for s in seed.split(",")]
if len(seed) > 1:
p = mp.Pool(2*len(gpu))
args = []
for i, s in enumerate(seed):
gpu_id = gpu[i % len(gpu)]
args.append((gpu_id, variant, s))
p.starmap(experiment, args)
else:
experiment(gpu_id=gpu[0], variant=variant, seed=seed[0])
if __name__ == "__main__":
main()