- Support priority: Tier S
- [Object number threshold scene selector with 2D detection](configs/ /)
- Object number threshold scene selector with 2D open vocabulary
- (TBD) Select scene with VLM QA
- (TBD) rosbag selector
DOCKER_BUILDKIT=1 docker build -t autoware-ml-ros2 ./tools/setting_environment/ros2/
Choose from belows.
python3 tools/scene_selector/image_selector_t4_dataset.py {config_file} --out-dir {output_dir} \
--dataset-configs {dataset_config} --data-root {data_root} \
--experiment-name {experiment_name} --true-ratio {true_ratio} \
--show-visualization --create-symbolic-links
Example
python3 tools/scene_selector/image_selector_t4_dataset.py tools/scene_selector/configs/det2d_object_num_selector/yolox_l_object_number_sum.py \
--out-dir ./work_dirs/closed_vocab --dataset-configs autoware_ml/configs/detection3d/dataset/t4dataset/db_jpntaxi_v2_mini.yaml \
--data-root ./data/t4dataset/ --experiment-name closed_vocab_exp \
--true-ratio 0.1 --show-visualization --create-symbolic-links
This is a tool to select images from a set of images. Note that currently we do not support the evaluation as we do in "t4dataset selector" at this moment.
- Run
python tools/scene_selector/image_selector.py {config_file} {directory or image_file}
- Example
python3 tools/scene_selector/image_selector.py tools/scene_selector/configs/det2d_object_num_selector/yolox_l_object_number_sum.py \
"./data/t4dataset/db_jpntaxi_v2_mini/0338521f-321a-4a9a-9c52-480f1ae1131a/2/data/CAM_FRONT/*.jpg" --out-dir ./work_dirs
- Run
python3 tools/scene_selector/multimodal_t4_dataset_selector.py {config_file} --out-dir {output_dir} \
--dataset-configs {dataset_config} --data-root {data_root} \
--experiment-name {experiment_name} --true-ratio {true_ratio} \
--show-visualization --create-symbolic-links
- Example
python3 tools/scene_selector/multimodal_t4_dataset_selector.py tools/scene_selector/configs/model_rareness_example_mining/bevfusion_cl_transfusion_l.py \
--out-dir ./work_dirs/rareness_mining --dataset-configs autoware_ml/configs/detection3d/dataset/t4dataset/db_jpntaxi_v2_mini.yaml \
--data-root ./data/t4dataset/ --experiment-name rareness_mining \
--true-ratio 0.1 --show-visualization --create-symbolic-links
If you want to use evaluation for scene selector, you should use annotated T4dataset.
- Make
pseudo_label_infos_2d.pkl
bytools/t4dataset_pseudo_label_2d/t4dataset_pseudo_label.py
python3 tools/t4dataset_pseudo_label_2d/t4dataset_pseudo_label.py --input {path to non-annotated T4dataset} --config {config_file} --ckpt {ckpt_file}
- data/t4dataset/
- info/
- pseudo_label_infos_2d.pkl
- Run scene selector script to generate
scene_selector_infos.pkl
. This file contains results for which scene to select.
python3 tools/scene_selector/image_t4_dataset_selector.py {config_file} --out-dir {output_dir} \
--dataset-configs {dataset_config} --data-root {data_root} \
--experiment-name {experiment_name} --true-ratio {true_ratio} \
--show-visualization --create-symbolic-links
- data/t4dataset/
- info/
- pseudo_label_infos_2d.pkl
- scene_selector_infos.pkl
- If you want to check the result, you can use the following script.
python3 tools/scene_selector/visualize_image_selector.py
- If you want to evaluate with fine tuning for selected dataset, you should change the config as below and train by detection3d tools
train_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type="DefaultSampler", shuffle=True),
dataset=dict(
type="CBGSDataset",
dataset=dict(
data_root=data_root,
# ann_file=info_directory_path + _base_.info_train_file_name,
ann_file=info_directory_path + t4dataset_selected_infos_train.pkl,
modality=input_modality,
type=_base_.dataset_type,
metainfo=_base_.metainfo,
class_names=_base_.class_names,
test_mode=False,
data_prefix=_base_.data_prefix,
box_type_3d="LiDAR",
backend_args=backend_args,
),
),
)
This tool can be used to test for rosbag casually and cannot be used to evaluate.
python3 tools/scene_selector/image_selector_rosbag.py {config_file} --out-dir {output_dir} \
--experiment-name {experiment_name} \
--show-visualization --create-symbolic-links