-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter7.tex
254 lines (225 loc) · 7.68 KB
/
chapter7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
\chapter{High Pressure Sodium Luminaires}
The High Pressure Sodium (HPS) luminaire chosen is TH 400S PA22 (LEG = 8, SC = 1.4).
\section{Coefficient of Utilization}
The coefficient of utilization ($CU$) is calculated using the table given by the HPS luminaire~\cite{www:hps_photometric}. The calculus is demonstrated by the Equation~\ref{eq:hps_cu}.
\begin{equation*}
\begin{split}
\rho_c &= 70\%; \\
\rho_w &= 50\%; \\
\rho_f &= 20\%;
\end{split}
\qquad
\begin{split}
x &= 0.89; \\
x_1 &= 0; \\ y_1 &= 0.99 \\
x_2 &= 1; \\ y_2 &= 0.93
\end{split}
\qquad
\begin{split}
f(x) &= \frac{x_2 - x}{x_2 - x_1} \times y_1 +
\frac{x - x_1}{x_2 - x_1} \times y_2 \\
&= \frac{1 - 0.89}{1 - 0} \times 0.99 +
\frac{0.89 - 0}{1 - 0} \times 0.93 \\
& = 0.11 \times 0.99 - 0.89 \times 0.9 \\
& = 0.909 \\
& \approx 0.91
\end{split}
\label{eq:hps_cu_interpol_1}
\end{equation*}
\begin{equation*}
\begin{split}
\rho_c &= 50\%; \\
\rho_w &= 50\%; \\
\rho_f &= 20\%;
\end{split}
\qquad
\begin{split}
x &= 0.89; \\
x_1 &= 0; \\ y_1 &= 0.9 \\
x_2 &= 1; \\ y_2 &= 0.79
\end{split}
\qquad
\begin{split}
f(x) &= \frac{x_2 - x}{x_2 - x_1} \times y_1 +
\frac{x - x_1}{x_2 - x_1} \times y_2 \\
&= \frac{1 - 0.89}{1 - 0} \times 0.9 +
\frac{0.89 - 0}{1 - 0} \times 0.79 \\
& = 0.11 \times 0.9 - 0.89 \times 0.79 \\
& = 0.802 \\
& \approx 0.8
\end{split}
\label{eq:hps_cu_interpol_2}
\end{equation*}
\begin{equation}
\begin{split}
\rho_c &= 68.4\%; \\
\rho_w &= 50\%; \\
\rho_f &= 20\%;
\end{split}
\qquad
\begin{split}
x &= 68.4; \\
x_1 &= 50; \\ y_1 &= 0.79 \\
x_2 &= 70; \\ y_2 &= 0.91
\end{split}
\qquad
\begin{split}
f(x) &= \frac{x_2 - x}{x_2 - x_1} \times y_1 +
\frac{x - x_1}{x_2 - x_1} \times y_2 \\
&= \frac{70 - 68.4}{70 - 50} \times 0.79 +
\frac{68.4 - 50}{70 - 50} \times 0.91 \\
&= \frac{1.6}{20} \times 0.79 +
\frac{18.4}{20} \times 0.91 \\
& = 0.90 \\
CU_{hps} & = 0.90
\end{split}
\label{eq:hps_cu}
\end{equation}
\section{Light Loss Factor}
The light loss factor ($LLF$) is defined by the Equation~\ref{eq:LLF}.
\subsection{Lamp Lumen Depreciation}
The Equation~\ref{eq:hps_LLD} shows how to calculate the value of the $LLD$.
\begin{equation}
\begin{split}
LLD & = \frac{\text{Total downlight}}{\text{Design/Initial light}} \\
& = \frac{33,853.5}{47,500} \\
& = 0.713 \\
& \approx 0.71
\end{split}
\label{eq:hps_LLD}
\end{equation}
\subsection{Luminaire Dirt Depreciation}
Following an operation time of 12 months between cleaning, and taking into account the facility environment with little windows and the use as a gymnasium, the environment, according to the new IES studies for LDD, has a moderate cleaning level. The HPS luminaire has the following characteristics:
\begin{itemize}
\item Luminaire semi-direct
\item Open class
\item Class XY
\item $LDD = 0.86$, according to the LDD factor graphic
\end{itemize}
\subsection{Ballast Efficacy}
The HPS ballast is a Constant Wattage Autotransformer (CWA) and according to a specification of a ballast like this~\cite{www:mh_hps_ballast}, its ballast factor is $1.0$.
\subsection{Calculating the LLF}
The Equation~\ref{eq:hps_LLF_calc} shows the calculus of the HPS's $LLF$.
\begin{equation}
\begin{split}
LLF &= 0.86 \times 0.71 \times 1.0 \\
&= 0.61
\end{split}
\label{eq:hps_LLF_calc}
\end{equation}
\section{Number of Luminaires Calculus}
The amount of luminaires needed to achieve an illuminance of $500$ lux is calculated by the Equation~\ref{eq:hps_num_luminaires}.
\begin{equation}
\begin{split}
N_{lum} & = \frac{A_{total\,area} \times L_{Illuminance}}
{N_{lumens} \times N_{lamps} \times CU \times LLF} \\
& = \frac{9,805 \times 500}
{47,500 \times 1 \times 0.9 \times 0.61} \\
& = \frac{4,902,500}
{26,103.15} \\
& = 187.81 \\
& \approx 188
\end{split}
\label{eq:hps_num_luminaires}
\end{equation}
The amount of luminaires to install is $189$, which gives a distribution of $27 \times 7$ and the spacing is calculated by the Equation~\ref{eq:hps_spacing}
\begin{equation}
\begin{split}
L: & \frac{185}
{27} = 6.85\\
W: & \frac{53}
{7} = 7.57
\end{split}
\qquad
\begin{split}
a & = 7 m \\
b & = 1.5 m \\
c & = 8 m \\
d & = 2.5 m
\end{split}
\label{eq:hps_spacing}
\end{equation}
The illuminance to be maintained for the installed luminaires is calculated by the Equation~\ref{eq:hps_maint_light}
\begin{equation}
\begin{split}
L_{Illuminance} & =
\frac {N_{lum} \times N_{lumens} \times N_{lamps} \times CU \times LLF}
{A_{total\,area}} \\
& = \frac{189 \times 47,500 \times 1 \times 0.9 \times 0.61}
{9,805} \\
& = 503.16 \\
& \approx 503
\end{split}
\label{eq:hps_maint_light}
\end{equation}
\subsection{Checking the Spacing}
The Equation~\ref{eq:hps_shr} shows the calculus to check the spacing height ratio ($SHR$) attends the spacing criterion ($SC$).
\begin{equation}
\begin{split}
SHR & = \frac {1}{HM} \times \sqrt{\frac{A_{total\,area}}{N_{lum}}} \\
& = \frac {1}{7.5} \times \sqrt{\frac{9,805}{189}} \\
& = 0.133 \times \sqrt{51.88} \\
& = 0.133 \times 7.2 \\
& = 0.96 \\
\end{split}
\label{eq:hps_shr}
\end{equation}
The $SC$ given by the HPS luminaire~\cite{www:hps_photometric} is $1.4$ and the $SHR$ has an acceptable value when $SHR \leq SC$, thus the obtained $SHR$ is good.
\section{Luminaires Distribution}
The distribution of the luminaires is represented on Figure~\ref{fig:hps_dist}.
\begin{figure}[h!]
\centering
\includegraphics[width=.9\textwidth]{./figs/hps_dist.png}
\caption{High Pressure Sodium luminaires distributed along the facility ceiling.}
\label{fig:hps_dist}
\end{figure}
\section{Calculus of Economy}
\subsection{Energy Consumption}
To calculate the energy consumption, the following data are needed:
\begin{itemize}
\item Number of luminaires: $189$
\item Energy cost: $0.093$\$
\item Electric demand cost: $11.00$\$
\item Number of hours per year: $16 \times 365.25 = 5,844$
\item Luminaire power: $465 W$
\end{itemize}
The numbers of hours per year assumes the leap year, so, the multiplier is $365.25$. The energy consumption results are showed as follow:
\begin{itemize}
\item Total power ($kW$): $189 \times 465 = 87,885 W = 87.885 kW$
\item Total electric demand cost per year: $11 \times 12 \times 87.885 = 11,600.82$\$
\item Total electric consumption cost per year: $5,844 \times 0.093 \times 87.885 = 47,764.79$\$
\item Total energy cost: $59,365.61$\$
\end{itemize}
\subsection{Average of Replaced Lamps per Year}
In order to calculate the average of lamps replaced per year, the following data are needed:
\begin{itemize}
\item Number of luminaires: $189$
\item Number of hours per year: $5,844$
\item Lamp lifetime hours at $80\%$ of survival: $19,200$
\end{itemize}
The Equation~\ref{eq:hps_relamp_average} shows the replaced lamps calculus.
\begin{equation}
\begin{split}
& \text{Individual replaced lamps} \\
M_{individual} & = 20\% \times 189 \times \frac{5,844}{19,200} \\
& = 11.51 \\
& \approx 12
\end{split}
\begin{split}
& \text{Collective replaced lamps} \\
M_{collective} & = 189 \times \frac {5,844}{19.200} \\
& = 57.53 \\
& \approx 58
\end{split}
\label{eq:hps_relamp_average}
\end{equation}
Taking into account the worst case scenario, the calculation for this average is ceiling rounded. Thus, the average of replaced lamps per year is $70$.
\subsection{Relamping Workforce Cost per Year}
In order to calculate the cost for the relamping workforce per year, the following data are needed:
\begin{itemize}
\item Average of individual lamps replaced per year: $12$
\item Individual relamping cost: $87.00$\$
\item Average of collective luminaires replaced per year: $58$
\item Collective relamping cost: $9.00$\$
\end{itemize}
The average cost per year for the collective relamping is $522.00$\$ and for the individual relamping is $1,044,00$\$, so the total is $1.566,00$\$