-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathaverage_scores.py
67 lines (55 loc) · 1.75 KB
/
average_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import torch
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = output.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target)
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
files_scores = ['/data/tianyuan/EAN-Pytorch/8f_clips_1.npz',
'/data/tianyuan/EAN-Pytorch/16_clips_1.npz']
top1 = AverageMeter()
top5 = AverageMeter()
def compute_acc(labels, scores):
preds_max = np.argmax(scores, 2)[:, 0]
num_correct = np.sum(preds_max == labels)
acc = num_correct * 1.0 / preds.shape[0]
return acc
scores_agg = None
for filename in files_scores:
data = np.load(filename)
preds = data['predictions']
labels = data['labels']
scores = data['scores']
if scores_agg is None:
scores_agg = scores
else:
scores_agg += scores
acc_scores = compute_acc(labels, scores)
num_correct = np.sum(preds == labels)
acc = num_correct * 1.0 / preds.shape[0]
for k in range(labels.shape[0]):
label = torch.from_numpy(np.array([labels[k]]))
score = torch.from_numpy(scores_agg[k,:])
prec1, prec5 = accuracy(score, label, topk=(1, 5))
top1.update(prec1.item(), 1)
top5.update(prec5.item(), 1)
print('Accuracy of ensemble: top1:{} top5:{}'.format(top1.avg, top5.avg))