-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
190 lines (163 loc) · 7.01 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import json
import argparse
import torch
import numpy as np
from PIL import Image
from sklearn.neighbors import NearestNeighbors
from torchvision.transforms import Resize
from transformers import AutoModel
from tqdm import tqdm
import torch.nn.functional as F
#command-line argument parsing
def parse_args():
parser = argparse.ArgumentParser(description="Neighborhood Gradient Descent for MoAI")
parser.add_argument("--reference", type=str, required=True, help="Path to reference JSON file")
parser.add_argument("--eval", type=str, required=True, help="Path to evaluation dataset")
parser.add_argument("--num_neighbors", type=int, default=5, help="Number of neighbors for KNN")
parser.add_argument("--num_steps", type=int, default=10, help="Number of optimization steps")
parser.add_argument("--initial_lr", type=float, default=0.01, help="Initial learning rate")
parser.add_argument("--final_lr", type=float, default=1e-5, help="Final learning rate")
return parser.parse_args()
class NGDAdaptor:
def __init__(self, ref_data_path, num_neighbors=3):
self.num_neighbors = num_neighbors
self.ref_samples = self.load_reference_data(ref_data_path)
self.embed_model = self.init_embed_model()
self.knn_index = self.build_knn_index()
# Initialize MoAI model
self.moai, self.processor = self.init_moai_model()
self.frozen_model_parameters() # Freeze non-routing parameters
def init_embed_model(self):
"""Initialize embedding model with 8-bit quantization"""
return AutoModel.from_pretrained(
'nvidia/NV-Embed-v2',
device_map="auto",
load_in_8bit=True,
torch_dtype=torch.float16
)
def load_reference_data(self, path):
"""Load reference data with precomputed features"""
with open(path) as f:
data = json.load(f)
return data
def build_knn_index(self):
"""Build KNN index using precomputed embeddings"""
questions = [s['question'] for s in self.ref_samples]
embeddings = self.compute_embedding(questions)
return NearestNeighbors(n_neighbors=self.num_neighbors, metric='cosine').fit(embeddings)
def compute_embedding(self, texts):
"""Compute embeddings for a list of texts"""
with torch.no_grad():
embeddings = self.embed_model.encode(texts, instruction="Retrieve relevant questions: ")
return F.normalize(embeddings, p=2, dim=1).cpu().numpy()
def init_moai_model(self):
"""Initialize MoAI model with configurable routing weights"""
moai, processor, *_ = prepare_moai(
moai_path='BK-Lee/MoAI-7B',
bits=4,
grad_ckpt=False,
lora=False,
dtype='fp16'
)
return moai, processor
def frozen_model_parameters(self):
"""Freeze all parameters except the six MoAI attention modules"""
trainable_modules = [
"moai_CA_img_aux", # I_AUX
"moai_CA_img_lang", # I_LANG
"moai_SA_img", # I_SELF
"moai_CA_lang_aux", # L_AUX
"moai_CA_lang_img", # L_IMG
"moai_SA_lang" # L_SELF
]
for name, param in self.moai.named_parameters():
if not any(module in name for module in trainable_modules):
param.requires_grad = False
def ngd_step(self, test_item, num_steps=10, initial_lr=0.01, final_lr=1e-5):
"""Core NGD optimization step with cosine learning rate decay"""
# 1. Find neighbors
distances, indices = self.knn_index.kneighbors(self.compute_embedding([test_item['question']]))
neighbors = [self.ref_samples[i] for i in indices[0]]
similarities = 1 - distances[0]
# 2. Prepare routing parameters
routing_params = [p for p in self.moai.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(routing_params, lr=initial_lr)
# 3. Initialize cosine learning rate scheduler
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=num_steps,
eta_min=final_lr
)
# 4. Neighborhood gradient descent
for step in range(num_steps):
total_loss = 0
for i, neighbor in enumerate(neighbors):
inputs = self.prepare_inputs(neighbor)
outputs = self.moai(**inputs)
loss = self.compute_loss(outputs, neighbor['ground_truth'])
total_loss += similarities[i] * loss
# Backpropagation and optimization
optimizer.zero_grad()
(total_loss / similarities.sum()).backward()
optimizer.step()
scheduler.step()
print(f"Step {step+1}/{num_steps} | LR: {scheduler.get_last_lr()[0]:.2e}")
# 5. Generate final prediction
return self.generate_answer(test_item)
def prepare_inputs(self, item):
"""Process image/text inputs for MoAI"""
image = Resize((490, 490))(Image.open(item['image_path']))
return self.processor(
images=[image],
text=item['question'],
return_tensors="pt"
).to(self.moai.device)
def compute_loss(self, outputs, ground_truth):
"""Calculate cross entropy loss"""
answer_ids = self.processor(
ground_truth,
return_tensors="pt",
padding=True,
truncation=True
)["input_ids"].to(outputs.logits.device)
return F.cross_entropy(
outputs.logits[:, -answer_ids.size(1):, :].flatten(0, 1),
answer_ids.flatten(),
ignore_index=self.processor.tokenizer.pad_token_id
)
def generate_answer(self, item):
"""Generate answer with optimized routing weights"""
inputs = self.prepare_inputs(item)
generate_ids = self.moai.generate(
**inputs,
do_sample=True,
temperature=0.05,
max_new_tokens=256
)
return self.processor.batch_decode(generate_ids, skip_special_tokens=True)[0]
def main():
args = parse_args()
# Initialize adaptor with reference data
adaptor = NGDAdaptor(args.reference, num_neighbors=args.num_neighbors)
# Load evaluation data
with open(args.eval) as f:
eval_data = json.load(f)['samples']
# Run evaluation
results = []
for item in tqdm(eval_data):
optimized_answer = adaptor.ngd_step(
item,
num_steps=args.num_steps,
initial_lr=args.initial_lr,
final_lr=args.final_lr
)
results.append({
"prediction": optimized_answer,
"ground_truth": item['correct_answer']
})
# Calculate accuracy
accuracy = np.mean([r['prediction'].startswith(r['ground_truth']) for r in results])
print(f"Final Accuracy: {accuracy:.2%}")
if __name__ == "__main__":
main()