-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtool_subgraph.py
254 lines (229 loc) · 10.6 KB
/
tool_subgraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import networkx as nx
import re
#####################################
# Parse subtask name
#####################################
def parse_subtask(subtask_name):
pattern = r"^(.*?)\s*(?:\((.*?)\))?\s*\((.*?)\)\s*$"
match = re.match(pattern, subtask_name.strip())
if not match:
return {
"subtask_type": subtask_name.strip(),
"from_object": "",
"target_object": "",
"subtask_number": ""
}
subtask_type = match.group(1).strip()
object_info = match.group(2)
subtask_number = match.group(3).strip()
from_obj, to_obj = "", ""
if object_info:
object_info = object_info.strip()
if "->" in object_info:
parts = object_info.split("->", 1)
from_obj = parts[0].strip()
to_obj = parts[1].strip()
else:
from_obj = object_info
return {
"subtask_type": subtask_type,
"from_object": from_obj,
"target_object": to_obj,
"subtask_number": subtask_number
}
#####################################
# (2) Identify models for a subtask
#####################################
def get_models_for_subtask(mdt, subtask_str):
matches = []
lower_sub = subtask_str.lower()
for entry in mdt:
tasks_supported = [t.strip().lower() for t in entry.get("Tasks Supported", "").split(",")]
for t in tasks_supported:
if t in lower_sub:
matches.append(entry["Model"])
break
return matches
#####################################
# (3) Backtrack dependencies
#####################################
def backtrack_dependencies(tool_dependency_graph, models):
required = set()
for m in models:
if m in tool_dependency_graph:
ancestors = nx.ancestors(tool_dependency_graph, m)
required.update(ancestors)
required.add(m)
return tool_dependency_graph.subgraph(required).copy()
#####################################
# (4) Build subgraph for a single subtask
#####################################
def build_subgraph_for_subtask(
tool_dependency_graph: nx.DiGraph,
subtask_info: dict,
final_models: list,
parent_leaf_nodes: list,
is_first_subtask: bool,
global_graph: nx.DiGraph
):
def rename_node(original_tool_name):
if original_tool_name == "Input Image":
return "Input Image"
stype = subtask_info["subtask_type"]
subtask_number = subtask_info["subtask_number"]
from_obj = subtask_info["from_object"]
to_obj = subtask_info["target_object"]
if from_obj and to_obj:
object_info = f"{from_obj} -> {to_obj}"
elif from_obj:
object_info = from_obj
else:
object_info = ""
return f"{original_tool_name} ({stype} ({object_info})({subtask_number}))"
sg = backtrack_dependencies(tool_dependency_graph, final_models)
if not is_first_subtask and "Input Image" in sg.nodes():
sg.remove_node("Input Image")
rename_map = {node: rename_node(node) for node in sg.nodes()}
sg_renamed = nx.DiGraph()
for n in sg.nodes():
sg_renamed.add_node(rename_map[n])
for (u, v) in sg.edges():
sg_renamed.add_edge(rename_map[u], rename_map[v])
root_nodes = [n for n in sg_renamed if sg_renamed.in_degree(n) == 0]
if is_first_subtask:
for r in root_nodes:
if r != "Input Image":
global_graph.add_node(r)
global_graph.add_edge("Input Image", r)
else:
for r in root_nodes:
global_graph.add_node(r)
for leaf in parent_leaf_nodes:
global_graph.add_edge(leaf, r)
for n in sg_renamed.nodes():
global_graph.add_node(n)
for (u, v) in sg_renamed.edges():
global_graph.add_edge(u, v)
leaves = []
for fm in final_models:
if fm in rename_map:
renamed_fm = rename_map[fm]
if sg_renamed.out_degree(renamed_fm) == 0:
leaves.append(renamed_fm)
return leaves
#####################################
# (5) Build entire subtask tree into a global graph
#####################################
def build_tool_subgraph_from_subtask_tree(subtask_tree_json):
# Define internal tool dependency graph
tool_dependency_graph = nx.DiGraph()
tool_dependency_graph.add_edge("Input Image", "YOLOv7")
tool_dependency_graph.add_edge("Input Image", "GroundingDINO")
tool_dependency_graph.add_edge("Input Image", "GoogleCloudVision")
tool_dependency_graph.add_edge("Input Image", "RealESRGAN")
tool_dependency_graph.add_edge("Input Image", "MagicBrush")
tool_dependency_graph.add_edge("Input Image", "MIDAS")
tool_dependency_graph.add_edge("Input Image", "CRAFT")
tool_dependency_graph.add_edge("Input Image", "pix2pix")
tool_dependency_graph.add_edge("Input Image", "StabilitySearchRecolor")
tool_dependency_graph.add_edge("Input Image", "StabilityOutpaint")
tool_dependency_graph.add_edge("Input Image", "StabilityRemoveBG")
tool_dependency_graph.add_edge("Input Image", "Stability3")
tool_dependency_graph.add_edge("Input Image", "Gpt4o_1")
tool_dependency_graph.add_edge("Input Image", "DeblurGAN")
tool_dependency_graph.add_edge("YOLOv7", "SAM")
tool_dependency_graph.add_edge("GroundingDINO", "SAM")
tool_dependency_graph.add_edge("SAM", "DalleImage")
tool_dependency_graph.add_edge("SAM", "StabilityInpaint")
tool_dependency_graph.add_edge("SAM", "StabilityErase")
tool_dependency_graph.add_edge("CRAFT", "DeepFont")
tool_dependency_graph.add_edge("CRAFT", "EasyOCR")
tool_dependency_graph.add_edge("DeepFont", "Gpt4o_2")
tool_dependency_graph.add_edge("EasyOCR", "Gpt4o_2")
tool_dependency_graph.add_edge("EasyOCR", "CLIP")
tool_dependency_graph.add_edge("Gpt4o_2", "TextRedaction")
tool_dependency_graph.add_edge("Gpt4o_2", "TextWritingPillow1")
tool_dependency_graph.add_edge("Gpt4o_2", "TextRemovalPainting")
tool_dependency_graph.add_edge("Gpt4o_2", "DalleText")
tool_dependency_graph.add_edge("Gpt4o_2", "StabilityEraseText")
tool_dependency_graph.add_edge("DalleText", "TextWritingPillow2")
tool_dependency_graph.add_edge("StabilityEraseText", "TextWritingPillow2")
tool_dependency_graph.add_edge("TextRemovalPainting", "TextWritingPillow2")
#Model Description Table
mdt = [
{"Model": "YOLOv7", "Tasks Supported": "Object Detection"},
{"Model": "GroundingDINO", "Tasks Supported": "Object Detection"},
{"Model": "SAM", "Tasks Supported": "Object Segmentation"},
{"Model": "DalleImage", "Tasks Supported": "Object Replacement"},
{"Model": "DalleText", "Tasks Supported": "Text Removal"},
{"Model": "StabilityInpaint", "Tasks Supported": "Object Replacement, Object Recoloration, Object Removal"},
{"Model": "StabilitySearchRecolor", "Tasks Supported": "Object Recoloration"},
{"Model": "StabilityOutpaint", "Tasks Supported": "Outpainting"},
{"Model": "StabilityRemoveBG", "Tasks Supported": "Background Removal"},
{"Model": "StabilityErase", "Tasks Supported": "Object Removal"},
{"Model": "StabilityEraseText", "Tasks Supported": "Text Removal"},
{"Model": "Stability3", "Tasks Supported": "Changing Scenery"},
{"Model": "TextRemovalPainting", "Tasks Supported": "Text Removal"},
{"Model": "DeblurGAN", "Tasks Supported": "Image Deblurring"},
{"Model": "GPT4o_1", "Tasks Supported": "Image Captioning"},
{"Model": "GPT4o_2", "Tasks Supported": "Question Answering based on text, Sentiment Analysis"},
{"Model": "GoogleCloudVision", "Tasks Supported": "Landmark Detection"},
{"Model": "CRAFT", "Tasks Supported": "Text Detection"},
{"Model": "CLIP", "Tasks Supported": "Caption Consistency Check "},
{"Model": "DeepFont", "Tasks Supported": "Text Style Detection"},
{"Model": "EasyOCR", "Tasks Supported": "Text Extraction"},
{"Model": "MagicBrush", "Tasks Supported": "Object Addition"},
{"Model": "pix2pix", "Tasks Supported": "Changing Scenery"},
{"Model": "RealESRGAN", "Tasks Supported": "Image Upscaling"},
{"Model": "TextWritingPillow1", "Tasks Supported": "Text Addition"},
{"Model": "TextWritingPillow2", "Tasks Supported": "Text Replacement, Keyword Highlighting"},
{"Model": "TextRedaction", "Tasks Supported": "Text Redaction"},
{"Model": "MIDAS", "Tasks Supported": "Depth Estimation"}
]
global_graph = nx.DiGraph()
global_graph.add_node("Input Image")
subtask_leaf_map = {}
subtask_list = subtask_tree_json.get("subtask_tree", [])
for node in subtask_list:
sname = node.get("subtask")
if not sname:
continue
parents = node.get("parent", [])
subtask_info = parse_subtask(sname)
models_for_subtask = get_models_for_subtask(mdt, subtask_info["subtask_type"])
parent_leaf_nodes = []
for p in parents:
parent_leaf_nodes.extend(subtask_leaf_map.get(p, []))
is_first = (len(parents) == 0)
new_leaves = build_subgraph_for_subtask(
tool_dependency_graph,
subtask_info,
models_for_subtask,
parent_leaf_nodes,
is_first,
global_graph
)
subtask_leaf_map[sname] = new_leaves
adjacency_dict = {node: list(global_graph.successors(node)) for node in global_graph.nodes()}
return adjacency_dict
#####################################
# Example usage
#####################################
#if __name__ == "__main__":
# example_subtask_tree = {
# "task": "Segment the dog, detect the person, recolor the leaves to red, and expand the image.",
# "subtask_tree": [
# {"subtask": "Outpainting (1)", "parent": []},
# {"subtask": "Object Segmentation (Dog) (2)", "parent": ["Outpainting (1)"]},
# {"subtask": "Object Detection (Person) (3)", "parent": ["Object Segmentation (Dog) (2)"]},
# {"subtask": "Object Recoloration (Leaves -> Red) (4)", "parent": ["Object Detection (Person) (3)"]},
# {"subtask": "Object Detection (Person) (2)", "parent": ["Outpainting (1)"]},
# {"subtask": "Object Segmentation (Dog) (3)", "parent": ["Object Detection (Person) (2)"]},
# {"subtask": "Object Recoloration (Leaves -> Red) (4)", "parent": ["Object Segmentation (Dog) (3)"]}
# ]
# }
#
# final_adjacency_dict = build_tool_subgraph_from_subtask_tree(example_subtask_tree)
# print("\n=== Final Graph Adjacency Dictionary ===")
# for key, value in final_adjacency_dict.items():
# print(f"{key}: {value}")