-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserial.cpp
executable file
·313 lines (271 loc) · 12 KB
/
serial.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include "common.h"
#include <iostream>
// default max number of particles that can co-exist in 1 cell at a time
#if !defined (CELL_MAX_PARTICLES)
#define CELL_MAX_PARTICLES 4
#endif
//
// benchmarking program
//
int main( int argc, char **argv )
{
int navg,nabsavg=0;
double davg,dmin, absmin=1.0, absavg=0.0;
double size, cell_size, cutoff = get_cutoff();
int grid_width;
std::vector<std::vector<particle_t*>> cells;
// BEGIN arguments--------------------
if( find_option( argc, argv, "-h" ) >= 0 ){
printf( "Options:\n" );
printf( "-h to see this help\n" );
printf( "-n <int> to set the number of particles\n" );
printf( "-o <filename> to specify the output file name\n" );
printf( "-s <filename> to specify a summary file name\n" );
printf( "-no turns off all correctness checks and particle output\n");
return 0;
}
int n = read_int( argc, argv, "-n", 1000 );
char *savename = read_string( argc, argv, "-o", NULL );
char *sumname = read_string( argc, argv, "-s", NULL );
FILE *fsave = savename ? fopen( savename, "w" ) : NULL;
FILE *fsum = sumname ? fopen ( sumname, "a" ) : NULL;
// END arguments--------------------
// BEGIN initialize--------------------
particle_t *particles = (particle_t*) malloc( n * sizeof(particle_t) );
set_size( n );
init_particles( n, particles );
size = get_size();
// cell_size = (2*sqrt(CELL_MAX_PARTICLES) + 0.01)*cutoff ;
cell_size = (2*sqrt(CELL_MAX_PARTICLES) )*cutoff ;
grid_width = (int)ceil(size/cell_size);
// cells.reserve(grid_width*grid_width);
init_grid(n, particles, cell_size, grid_width, cells);
// for (int i=n-1; i<n; ++i){
// printf("x %f\t y %f\t cell x %d\t cell y %d\n", particles[0].x, particles[0].y, particles[0].cell_x, particles[0].cell_y);
// printf("x %f\t y %f\t cell x %d\t cell y %d\n", particles[i].x, particles[i].y, particles[i].cell_x, particles[i].cell_y);
// }
// printf("size vector particle_t: %d\n", sizeof(std::vector<particle_t*>));
// std::vector<std::vector<particle_t*> > cells;
// END initialize--------------------
// BEGIN simulate--------------------
double simulation_time = read_timer( );
for( int step = 0; step < NSTEPS; step++ ){
navg = 0;
davg = 0.0;
dmin = 1.0;
//
// compute forces
//
for( int i = 0; i < n; i++ ){
particles[i].ax = particles[i].ay = 0;
// _00_|_01_|_02_
// _10_|__i_|_12_
// 20 | 21 | 22
const double par_x = particles[i].x;
const double par_y = particles[i].y;
const int cell_x = particles[i].cell_x;
const int cell_y = particles[i].cell_y;
const int cell_own = cell_y*grid_width + cell_x;
const double x_mid_cell = (cell_x + 0.5)*cell_size;
const double y_mid_cell = (cell_y + 0.5)*cell_size;
int cell_i;
// own cell
cell_i = cell_own;
if (cells[cell_i].size() > 1){
// for (auto it=cells[cell_i].begin(); it!=cells[cell_i].end(); ++it){
// // std::cout << "iterator: "<< *it << "\t particle: " << &particles[i] << "\n";
// // std::cout << "iterator-p: "<< (*it)->x << "\t particle-p: " << (&particles[i])->x << "\n";
// // std::cout << "iterator-p: "<< (*(*it)).x << "\t particle-p: " << particles[i].x << "\n";
// // test if iterator point to the particle itself
// if (*it != &particles[i]){
// apply_force(particles[i], (*(*it)), &dmin, &davg, &navg);
// }
// }
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
// left
if (fequal(par_y, y_mid_cell) && fequal(par_x, cell_x*cell_size)) {
// printf("%s\n", "particle at y_mid_cell left edge");
// if having left neighbor
if (cell_x > 0){
cell_i = cell_own - 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
}
// // right
if (fequal(par_y, y_mid_cell) && fequal(par_x, cell_x*cell_size + cell_size)) {
// printf("%s\n", "particle at y_mid_cell right edge");
// if having right neighbor
if (cell_x < (grid_width-1)) {
cell_i = cell_own + 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
}
// bottom
if (fequal(par_x, x_mid_cell) && fequal(par_y, cell_y*cell_size)) {
// printf("%s\n", "particle at x_mid_cell bottom edge");
// if having bottom neighbor
if (cell_y > 0) {
cell_i = cell_own - grid_width;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
}
// top
if (fequal(par_x, x_mid_cell) && fequal(par_y, cell_y*cell_size + cell_size)) {
// printf("%s\n", "particle at x_mid_cell top edge");
// if having top neighbor
if (cell_y < (grid_width-1)) {
cell_i = cell_own + grid_width;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
}
// bottom-left
if (fless(par_x, x_mid_cell) && fless(par_y, y_mid_cell)) {
// left neighbor
if (cell_x > 0){
cell_i = cell_own - 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
// bottom neighbor
if (cell_y > 0) {
cell_i = cell_own - grid_width;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
// bottom-left neighbor
if (cell_x > 0 && cell_y > 0){
cell_i = cell_own - grid_width - 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
}
// bottom-right
if (fgreater(par_x, x_mid_cell) && fless(par_y, y_mid_cell)) {
// right neighbor
if (cell_x < (grid_width-1)) {
cell_i = cell_own + 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
// bottom neighbor
if (cell_y > 0) {
cell_i = cell_own - grid_width;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
// bottom-right neighbor
if (cell_x < (grid_width-1) && cell_y > 0){
cell_i = cell_own - grid_width + 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
}
// top-right
if (fgreater(par_x, x_mid_cell) && fgreater(par_y, y_mid_cell)) {
// right neighbor
if (cell_x < (grid_width-1)) {
cell_i = cell_own + 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
// top neighbor
if (cell_y < (grid_width-1)) {
cell_i = cell_own + grid_width;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
// top-right neighbor
if (cell_x < (grid_width-1) && cell_y < (grid_width-1)) {
cell_i = cell_own + grid_width + 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
}
// top-left
if (fless(par_x, x_mid_cell) && fgreater(par_y, y_mid_cell)) {
// left neighbor
if (cell_x > 0){
cell_i = cell_own - 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
// top neighbor
if (cell_y < (grid_width-1)) {
cell_i = cell_own + grid_width;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
// top-left neighbor
if (cell_x > 0 && cell_y < (grid_width-1)) {
cell_i = cell_own + grid_width - 1;
if (!cells[cell_i].empty())
visit_cell_and_apply_force(particles[i], cells, cell_i, &dmin, &davg, &navg);
}
}
}
//
// move particles
//
for( int i = 0; i < n; i++ )
move_to_cell(particles[i], cell_size, grid_width, cells);
// for( int i = 0; i < n; i++ )
// move( particles[i] );
if( find_option( argc, argv, "-no" ) == -1 )
{
//
// Computing statistical data
//
if (navg) {
absavg += davg/navg;
nabsavg++;
}
if (dmin < absmin) absmin = dmin;
//
// save if necessary
//
if( fsave && (step%SAVEFREQ) == 0 )
save( fsave, n, particles );
}
}
simulation_time = read_timer( ) - simulation_time;
// END simulate--------------------
printf( "n = %d, simulation time = %g seconds", n, simulation_time);
if( find_option( argc, argv, "-no" ) == -1 ){
if (nabsavg) absavg /= nabsavg;
//
// -the minimum distance absmin between 2 particles during the run of the simulation
// -A Correct simulation will have particles stay at greater than 0.4 (of cutoff) with typical values between .7-.8
// -A simulation were particles don't interact correctly will be less than 0.4 (of cutoff) with typical values between .01-.05
//
// -The average distance absavg is ~.95 when most particles are interacting correctly and ~.66 when no particles are interacting
//
printf( ", absmin = %lf, absavg = %lf", absmin, absavg);
if (absmin < 0.4) printf ("\nThe minimum distance is below 0.4 meaning that some particle is not interacting");
if (absavg < 0.8) printf ("\nThe average distance is below 0.8 meaning that most particles are not interacting");
}
printf("\n");
//
// Printing summary data
//
if( fsum)
fprintf(fsum,"%d %g\n",n,simulation_time);
// printf("x_%f\t y_%f\t cell_x_%d\t cell_y_%d\n", particles[n-1].x, particles[n-1].y, particles[n-1].cell_x, particles[n-1].cell_y);
//
// Clearing space
//
if( fsum )
fclose( fsum );
free( particles );
if( fsave )
fclose( fsave );
return 0;
}