Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cannot reproduce reported results for PEMS08 with pred_len=48 and pred_len=96 #154

Open
tgottwald opened this issue Dec 19, 2024 · 0 comments

Comments

@tgottwald
Copy link

Hi,
I tried to reproduce your reported results in Table 9 for PEMS08 with a prediction window size of 48 and 96 using your multivariate_forecasting/PEMS/iTransformer_08.sh script.
However my MAE and MSE turned out to be significantly higher than the ones given in your paper. Do you have any idea why this is the case? Did you use other hyperparameters to achieve the results reported in the paper than used in the script?

PEMS08, pred_len=48:

Args in experiment:
Namespace(is_training=1, model_id='PEMS08_96_48', model='iTransformer', data='PEMS', root_path='./dataset/PEMS/', data_path='PEMS08.npz', features='M', target='OT', freq='h', checkpoints='./checkpoints/', seq_len=96, label_len=48, pred_len=48, enc_in=170, dec_in=170, c_out=170, d_model=512, n_heads=8, e_layers=4, d_layers=1, d_ff=512, moving_avg=25, factor=1, distil=True, dropout=0.1, embed='timeF', activation='gelu', output_attention=False, do_predict=False, num_workers=10, itr=1, train_epochs=10, batch_size=16, patience=3, learning_rate=0.001, des='Exp', loss='MSE', lradj='type1', use_amp=False, use_gpu=True, gpu=0, use_multi_gpu=False, devices='0,1,2,3', exp_name='MTSF', channel_independence=False, inverse=False, class_strategy='projection', target_root_path='./data/electricity/', target_data_path='electricity.csv', efficient_training=False, use_norm=0, partial_start_index=0)
mse:0.2378038763999939, mae:0.2811351418495178
Diff: MSE: +0.051, MAE: +0.046

PEMS08, pred_len=96:

Args in experiment:
Namespace(is_training=1, model_id='PEMS08_96_96', model='iTransformer', data='PEMS', root_path='./dataset/PEMS/', data_path='PEMS08.npz', features='M', target='OT', freq='h', checkpoints='./checkpoints/', seq_len=96, label_len=48, pred_len=96, enc_in=170, dec_in=170, c_out=170, d_model=512, n_heads=8, e_layers=4, d_layers=1, d_ff=512, moving_avg=25, factor=1, distil=True, dropout=0.1, embed='timeF', activation='gelu', output_attention=False, do_predict=False, num_workers=10, itr=1, train_epochs=10, batch_size=16, patience=3, learning_rate=0.001, des='Exp', loss='MSE', lradj='type1', use_amp=False, use_gpu=True, gpu=0, use_multi_gpu=False, devices='0,1,2,3', exp_name='MTSF', channel_independence=False, inverse=False, class_strategy='projection', target_root_path='./data/electricity/', target_data_path='electricity.csv', efficient_training=False, use_norm=0, partial_start_index=0)
mse:0.3024812638759613, mae:0.3287292718887329
Diff: MSE: +0.081, MAE: +0.061

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant