-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_dit.py
85 lines (78 loc) · 3.78 KB
/
run_dit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from diffusers import DiTPipeline, DPMSolverMultistepScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
import torch
import argparse
from evaluation import evaluate_quantitative_scores, test_latencies
from dit_fast_attention import transform_model_fast_attention
import os
from utils import calculate_flops
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="facebook/DiT-XL-2-512")
parser.add_argument("--n_calib", type=int, default=4)
parser.add_argument("--n_steps", type=int, default=50)
parser.add_argument("--threshold", type=float, default=1)
parser.add_argument("--window_size", type=int, default=128)
parser.add_argument("--sequential_calib", action="store_true")
parser.add_argument("--eval_real_image_path", type=str, default="data/real_images_imagenet_50k")
parser.add_argument("--eval_n_images", type=int, default=50000)
parser.add_argument("--eval_batchsize", type=int, default=12)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--use_cache", action="store_true")
parser.add_argument("--raw_eval", action="store_true")
parser.add_argument("--ablation", type=str, default="")
parser.add_argument("--seed", type=int, default=3)
parser.add_argument("--metric", type=str, default="")
parser.add_argument("--cfg_scale", type=float, default=4)
args = parser.parse_args()
pipe = DiTPipeline.from_pretrained(args.model, torch_dtype=torch.float16).to("cuda")
calib_x = torch.randint(0, 1000, (args.n_calib,), generator=torch.Generator().manual_seed(args.seed)).to("cuda")
if args.raw_eval:
fake_image_path = f"output/{args.model.replace('/','_')}_steps{args.n_steps}"
else:
pipe, search_time = transform_model_fast_attention(
pipe,
n_steps=args.n_steps,
n_calib=args.n_calib,
calib_x=calib_x,
threshold=args.threshold,
window_size=[args.window_size, args.window_size],
use_cache=args.use_cache,
seed=3,
sequential_calib=args.sequential_calib,
debug=args.debug,
ablation=args.ablation,
cond_first=True,
metric=args.metric,
guidance_scale=args.cfg_scale,
)
# evaluate the results
fake_image_path = f"output/{args.model.replace('/','_')}_calib{args.n_calib}_steps{args.n_steps}_threshold{args.threshold}_window{args.window_size}_sequential{args.sequential_calib}_evalsize{args.eval_n_images}_cfg_scale{args.cfg_scale}"
if args.ablation != "":
fake_image_path = fake_image_path + f"_ablation{args.ablation}"
if args.metric != "":
fake_image_path = fake_image_path + f"_{args.metric}"
macs, attn_mac = calculate_flops(pipe, calib_x[0:1], n_steps=args.n_steps)
latencies = test_latencies(pipe, args.n_steps, calib_x, bs=[8])
memory_allocated = torch.cuda.max_memory_allocated(device=torch.device("cuda")) / (1024**2)
memory_cached = torch.cuda.max_memory_cached(device=torch.device("cuda")) / (1024**2)
if args.debug:
result = {}
else:
result = evaluate_quantitative_scores(
pipe,
args.eval_real_image_path,
args.eval_n_images,
args.eval_batchsize,
num_inference_steps=args.n_steps,
fake_image_path=fake_image_path,
seed=args.seed,
guidance_scale=args.cfg_scale,
)
# save the result
with open("output/results.txt", "a+") as f:
f.write(
f"{args}\n{result}\nmacs={macs}\nattn_mac={attn_mac}\nlatencies={latencies}\nmemory allocated={memory_allocated}MB\nmemory cached={memory_cached}MB\nsearch time={search_time}s\n\n"
)
if __name__ == "__main__":
main()