-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdit_fast_attention.py
283 lines (251 loc) · 11 KB
/
dit_fast_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import torch
from torchmetrics.image import StructuralSimilarityIndexMeasure as SSIM
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity as LPIPS
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
from diffusers.models.transformers.transformer_2d import Transformer2DModel
import functools
import collections
from modules.fast_feed_forward import FastFeedForward
from modules.fast_attn_processor import FastAttnProcessor
import os
from time import time
from diffusers.models import AutoencoderKL
def set_stepi_warp(pipe):
@functools.wraps(pipe)
def wrapper(*args, **kwargs):
for blocki, block in enumerate(pipe.transformer.transformer_blocks):
for layer in block.children():
layer.stepi = 0
layer.cached_residual = None
layer.cached_output = None
out = pipe(*args, **kwargs)
for blocki, block in enumerate(pipe.transformer.transformer_blocks):
for layer in block.children():
layer.stepi = 0
layer.cached_residual = None
layer.cached_output = None
return out
return wrapper
def compression_loss(a, b, metric=""):
ls = []
if a.__class__.__name__ == "Transformer2DModelOutput":
a = [a.sample]
b = [b.sample]
for ai, bi in zip(a, b):
if isinstance(ai, torch.Tensor):
if metric == "ssim":
ssim = SSIM(data_range=1.0).to(ai.device)
l = 1 - ssim(ai, bi)
elif metric == "lpips":
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema").to(device=ai.device, dtype=ai.dtype)
lpips = LPIPS(net_type="squeeze").to(ai.device)
l = lpips(
vae.decode(ai.reshape(ai.shape[0] * 2, ai.shape[1] // 2, ai.shape[2], ai.shape[3])).sample,
vae.decode(bi.reshape(ai.shape[0] * 2, ai.shape[1] // 2, ai.shape[2], ai.shape[3])).sample,
)
else:
diff = (ai - bi) / (torch.max(ai, bi) + 1e-6)
l = diff.abs().clip(0, 10).mean()
ls.append(l)
l = sum(ls) / len(ls)
return l
def transformer_forward_pre_hook(m, args, kwargs):
now_stepi = m.transformer_blocks[0].attn1.stepi
for blocki, block in enumerate(m.transformer_blocks):
# Set `need_compute_residual` to False to avoid the process of trying different
# compression strategies to override the saved residual.
block.attn1.processor.need_compute_residual[now_stepi] = False
block.attn1.processor.need_cache_output = False
raw_outs = m.forward(*args, **kwargs)
for blocki, block in enumerate(m.transformer_blocks):
if now_stepi == 0:
continue
# Currently, we only compress `attn1` in each block. `attn2` is not handled.
for attni, attn in enumerate([block.attn1]):
if attn is None or not isinstance(attn.processor, FastAttnProcessor):
continue
method_candidates = block.method_candidates
selected_method = "full_attn"
for method in method_candidates:
# Try compress this attention using `method`
attn.processor.steps_method[now_stepi] = method
# Set the timestep index of every layer back to now_stepi
# (which are increased by one in every forward)
for _block in m.transformer_blocks:
for layer in _block.children():
layer.stepi = now_stepi
# Compute the overall transformer output
outs = m.forward(*args, **kwargs)
l = compression_loss(raw_outs, outs, metric=m.metric)
threshold = m.loss_thresholds[now_stepi][blocki]
if m.debug:
print(f"{method}: L(O,O')={l} threshold={threshold}")
if l < threshold:
selected_method = method
break
attn.processor.steps_method[now_stepi] = selected_method
print(f"Block {blocki} attn{attni} stepi{now_stepi} {selected_method}")
del l, outs
del raw_outs
# Set the timestep index of every layer back to now_stepi
# (which are increased by one in every forward)
for _block in m.transformer_blocks:
for layer in _block.children():
layer.stepi = now_stepi
for blocki, block in enumerate(m.transformer_blocks):
# During the compression plan decision process,
# we set the `need_compute_residual` property of all attention modules to `True`,
# so that all full attention modules will save its residual for convenience.
# The residual will be saved in the follow-up forward call.
block.attn1.processor.need_compute_residual[now_stepi] = True
block.attn1.processor.need_cache_output = True
@torch.no_grad()
def transform_model_fast_attention(
raw_pipe,
n_steps,
n_calib,
calib_x,
threshold,
window_size=[-64, 64],
use_cache=False,
seed=3,
sequential_calib=False,
debug=False,
ablation="",
cond_first=False,
metric="",
negative_prompt="",
guidance_scale=4,
):
pipe = set_stepi_warp(raw_pipe)
blocks = pipe.transformer.transformer_blocks
transformer = pipe.transformer
# is_transform_attn2=blocks[0].attn2 is not None
is_transform_attn2 = False
print(f"Transform attn2 {is_transform_attn2}")
# is_transform_ff=hasattr(blocks[0],"ff")
is_transform_ff = False
print(f"Transform ff {is_transform_ff}")
st = time()
cache_file = f"cache/{raw_pipe.config._name_or_path.replace('/','_')}_{n_steps}_{n_calib}_{threshold}_{sequential_calib}_{window_size}_{guidance_scale}"
if ablation != "":
cache_file = cache_file + f"_{ablation}"
if metric != "":
cache_file = cache_file + f"_{metric}"
if negative_prompt != "":
cache_file = cache_file + f"_{negative_prompt}"
cache_file = cache_file + ".json"
print(f"cache file is {cache_file}")
if use_cache and os.path.exists(cache_file):
blocks_methods = torch.load(cache_file)
else:
# reset all processors
for blocki, block in enumerate(blocks):
attn: Attention = block.attn1
if ablation != "":
block.method_candidates = ablation.split(",") if isinstance(ablation, str) else ablation
else:
block.method_candidates = [
"output_share", # AST
"residual_window_attn+cfg_attn_share", # WA-RS + ASC
"residual_window_attn", # WA-RS
"full_attn+cfg_attn_share", # ASC
]
print(f"method_candidates of {blocki} {block.method_candidates}")
# Initialize all attention processors to the `full_attn` strategy
block.attn1.processor = FastAttnProcessor(
window_size, ["full_attn" for _ in range(n_steps)], cond_first=cond_first
)
block.attn1.processor.need_compute_residual = [True for _ in range(n_steps)]
if is_transform_attn2:
block.attn2.processor = FastAttnProcessor(
window_size, ["full_attn" for _ in range(n_steps)], cond_first=cond_first
)
block.attn2.processor.need_compute_residual = [True for _ in range(n_steps)]
if is_transform_ff:
block.ff = FastFeedForward(block.ff.net, ["full_attn" for _ in range(n_steps)])
# Setup loss threshold for each timestep and layer
loss_thresholds = []
for step_i in range(n_steps):
sub_list = []
for blocki in range(len(blocks)):
threshold_i = (blocki + 1) / len(blocks) * threshold
sub_list.append(threshold_i)
loss_thresholds.append(sub_list)
# calibration
print(isinstance(transformer, Transformer2DModel))
transformer.metric = metric
h = transformer.register_forward_pre_hook(transformer_forward_pre_hook, with_kwargs=True)
##########
def test_hook(m, input, output):
# output[0].register_hook()
print("forward done ------- -------")
##########
h_test = transformer.register_forward_hook(test_hook)
transformer.loss_thresholds = loss_thresholds
transformer.pipe = pipe
transformer.debug = debug
print(transformer)
if negative_prompt == "":
pipe(
calib_x,
num_inference_steps=n_steps,
generator=torch.manual_seed(seed),
output_type="latent",
return_dict=False,
guidance_scale=guidance_scale,
)
else:
pipe(
calib_x,
num_inference_steps=n_steps,
generator=torch.manual_seed(seed),
output_type="latent",
negative_prompt=negative_prompt,
return_dict=False,
guidance_scale=guidance_scale,
)
h.remove()
h_test.remove()
blocks_methods = []
for blocki, block in enumerate(blocks):
attn_steps_method = block.attn1.processor.steps_method
attn2_steps_method = block.attn2.processor.steps_method if is_transform_attn2 else None
ff_steps_method = block.ff.steps_method if is_transform_ff else None
blocks_methods.append(
{
"attn1": attn_steps_method,
"attn2": attn2_steps_method,
"ff": ff_steps_method,
}
)
# save cache
if not os.path.exists("cache"):
os.makedirs("cache")
torch.save(blocks_methods, cache_file)
et = time()
# set processor
for blocki, block in enumerate(blocks):
block.attn1.processor = FastAttnProcessor(window_size, blocks_methods[blocki]["attn1"], cond_first=cond_first)
if blocks_methods[blocki]["attn2"] is not None:
block.attn2.processor = FastAttnProcessor(
window_size, blocks_methods[blocki]["attn2"], cond_first=cond_first
)
if blocks_methods[blocki]["ff"] is not None:
block.ff = FastFeedForward(block.ff.net, blocks_methods[blocki]["ff"])
# statistics
counts = collections.Counter([method for block in blocks for method in block.attn1.processor.steps_method])
total = sum(counts.values())
for k, v in counts.items():
print(f"attn1 {k} {v/total}")
if is_transform_attn2:
counts = collections.Counter([method for block in blocks for method in block.attn2.processor.steps_method])
total = sum(counts.values())
for k, v in counts.items():
print(f"attn2 {k} {v/total}")
if is_transform_ff:
counts = collections.Counter([method for block in blocks for method in block.ff.steps_method])
total = sum(counts.values())
for k, v in counts.items():
print(f"ff {k} {v/total}")
return pipe, et - st