-
Notifications
You must be signed in to change notification settings - Fork 50
/
app.py
228 lines (200 loc) · 8.24 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Not ready to use yet
import argparse
import numpy as np
import gradio as gr
from omegaconf import OmegaConf
import torch
from PIL import Image
import PIL
from pipelines import TwoStagePipeline
from huggingface_hub import hf_hub_download
import os
import rembg
from typing import Any
import json
import os
import json
import argparse
from model import CRM
from inference import generate3d
pipeline = None
rembg_session = rembg.new_session()
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
# expand image to 1:1
width, height = image.size
if width == height:
return image
new_size = (max(width, height), max(width, height))
new_image = Image.new("RGBA", new_size, bg_color)
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
new_image.paste(image, paste_position)
return new_image
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def remove_background(
image: PIL.Image.Image,
rembg_session = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# explain why current do not rm bg
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
image = Image.alpha_composite(background, image)
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def do_resize_content(original_image: Image, scale_rate):
# resize image content wile retain the original image size
if scale_rate != 1:
# Calculate the new size after rescaling
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
# Resize the image while maintaining the aspect ratio
resized_image = original_image.resize(new_size)
# Create a new image with the original size and black background
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
padded_image.paste(resized_image, paste_position)
return padded_image
else:
return original_image
def add_background(image, bg_color=(255, 255, 255)):
# given an RGBA image, alpha channel is used as mask to add background color
background = Image.new("RGBA", image.size, bg_color)
return Image.alpha_composite(background, image)
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
"""
input image is a pil image in RGBA, return RGB image
"""
print(background_choice)
if background_choice == "Alpha as mask":
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
image = Image.alpha_composite(background, image)
else:
image = remove_background(image, rembg_session, force_remove=True)
image = do_resize_content(image, foreground_ratio)
image = expand_to_square(image)
image = add_background(image, backgroud_color)
return image.convert("RGB")
def gen_image(input_image, seed, scale, step):
global pipeline, model, args
pipeline.set_seed(seed)
rt_dict = pipeline(input_image, scale=scale, step=step)
stage1_images = rt_dict["stage1_images"]
stage2_images = rt_dict["stage2_images"]
np_imgs = np.concatenate(stage1_images, 1)
np_xyzs = np.concatenate(stage2_images, 1)
glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, args.device)
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path, obj_path
parser = argparse.ArgumentParser()
parser.add_argument(
"--stage1_config",
type=str,
default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
help="config for stage1",
)
parser.add_argument(
"--stage2_config",
type=str,
default="configs/stage2-v2-snr.yaml",
help="config for stage2",
)
parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
specs = json.load(open("configs/specs_objaverse_total.json"))
model = CRM(specs).to(args.device)
model.load_state_dict(torch.load(crm_path, map_location = args.device), strict=False)
stage1_config = OmegaConf.load(args.stage1_config).config
stage2_config = OmegaConf.load(args.stage2_config).config
stage2_sampler_config = stage2_config.sampler
stage1_sampler_config = stage1_config.sampler
stage1_model_config = stage1_config.models
stage2_model_config = stage2_config.models
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
stage1_model_config.resume = pixel_path
stage2_model_config.resume = xyz_path
pipeline = TwoStagePipeline(
stage1_model_config,
stage2_model_config,
stage1_sampler_config,
stage2_sampler_config,
device=args.device,
dtype=torch.float16
)
with gr.Blocks() as demo:
gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
with gr.Row():
with gr.Column():
with gr.Row():
image_input = gr.Image(
label="Image input",
image_mode="RGBA",
sources="upload",
type="pil",
)
processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB")
with gr.Row():
with gr.Column():
with gr.Row():
background_choice = gr.Radio([
"Alpha as mask",
"Auto Remove background"
], value="Auto Remove background",
label="backgroud choice")
# do_remove_background = gr.Checkbox(label=, value=True)
# force_remove = gr.Checkbox(label=, value=False)
back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=1.0,
step=0.05,
)
with gr.Column():
seed = gr.Number(value=1234, label="seed", precision=0)
guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
step = gr.Number(value=50, minimum=30, maximum=100, label="sample steps", precision=0)
text_button = gr.Button("Generate 3D shape")
gr.Examples(
examples=[os.path.join("examples", i) for i in os.listdir("examples")],
inputs=[image_input],
)
with gr.Column():
image_output = gr.Image(interactive=False, label="Output RGB image")
xyz_ouput = gr.Image(interactive=False, label="Output CCM image")
output_model = gr.Model3D(
label="Output GLB",
interactive=False,
)
gr.Markdown("Note: The GLB model shown here has a darker lighting and enlarged UV seams. Download for correct results.")
output_obj = gr.File(interactive=False, label="Output OBJ")
inputs = [
processed_image,
seed,
guidance_scale,
step,
]
outputs = [
image_output,
xyz_ouput,
output_model,
output_obj,
]
text_button.click(fn=check_input_image, inputs=[image_input]).success(
fn=preprocess_image,
inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
outputs=[processed_image],
).success(
fn=gen_image,
inputs=inputs,
outputs=outputs,
)
demo.queue().launch()