-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathtrain.py
81 lines (59 loc) · 2.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from utils import *
from dataloader import *
from rnn_crf import *
from evaluate import *
def load_data(args):
data = dataloader(hre = HRE)
batch = []
cti = load_tkn_to_idx(args[1]) # char_to_idx
wti = load_tkn_to_idx(args[2]) # word_to_idx
itt = load_idx_to_tkn(args[3]) # idx_to_tkn
print("loading %s..." % args[4])
with open(args[4]) as fo:
text = fo.read().strip().split("\n" * (HRE + 1))
for block in text:
data.append_row()
for line in block.split("\n"):
x, y = line.split("\t")
x = [x.split(":") for x in x.split(" ")]
y = tuple(map(int, y.split(" ")))
xc, xw = zip(*[(list(map(int, xc.split("+"))), int(xw)) for xc, xw in x])
data.append_item(xc = xc, xw = xw, y0 = y)
for _batch in data.batchify(BATCH_SIZE):
xc, xw = data.to_tensor(_batch.xc, _batch.xw, _batch.lens)
_, y0 = data.to_tensor(None, _batch.y0, sos = True)
batch.append((xc, xw, y0))
print("data size: %d" % len(data.y0))
print("batch size: %d" % BATCH_SIZE)
return batch, cti, wti, itt
def train(args):
num_epochs = int(args[-1])
batch, cti, wti, itt = load_data(args)
model = rnn_crf(cti, wti, len(itt))
print(model)
optim = torch.optim.Adam(model.parameters(), lr = LEARNING_RATE)
epoch = load_checkpoint(args[0], model) if isfile(args[0]) else 0
filename = re.sub("\.epoch[0-9]+$", "", args[0])
print("training model...")
for ei in range(epoch + 1, epoch + num_epochs + 1):
loss_sum = 0
timer = time()
for xc, xw, y0 in batch:
loss = model(xc, xw, y0) # forward pass and compute loss
loss.backward() # compute gradients
optim.step() # update parameters
loss_sum += loss.item()
timer = time() - timer
loss_sum /= len(batch)
if ei % SAVE_EVERY and ei != epoch + num_epochs:
save_checkpoint("", None, ei, loss_sum, timer)
else:
save_checkpoint(filename, model, ei, loss_sum, timer)
if len(args) == 7 and (ei % EVAL_EVERY == 0 or ei == epoch + num_epochs):
evaluate(predict(model, cti, wti, itt, args[5]), True)
model.train()
print()
if __name__ == "__main__":
if len(sys.argv) not in [7, 8]:
sys.exit("Usage: %s model char_to_idx word_to_idx tag_to_idx training_data (validation_data) num_epoch" % sys.argv[0])
train(sys.argv[1:])