-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathpredict.py
75 lines (53 loc) · 2.23 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from utils import *
from dataloader import *
from rnn_crf import *
def load_model(args):
cti = load_tkn_to_idx(args[1]) # char_to_idx
wti = load_tkn_to_idx(args[2]) # word_to_idx
itt = load_idx_to_tkn(args[3]) # idx_to_tag
model = rnn_crf(cti, wti, len(itt))
print(model)
load_checkpoint(args[0], model)
return model, cti, wti, itt
def run_model(model, data, itt):
with torch.no_grad():
model.eval()
for batch in data.batchify(BATCH_SIZE):
xc, xw, lens = batch.xc, batch.xw, batch.lens
xc, xw = data.to_tensor(bc = xc, bw = xw, lens = lens)
y1 = model.decode(xc, xw, lens)
batch.y1 = [[itt[i] for i in y] for y in y1]
for x0, y0, y1 in zip(batch.x0, batch.y0, batch.y1):
if not HRE:
x0, y0, y1 = [x0], [y0], [y1]
for x0, y0, y1 in zip(x0, y0, y1):
yield x0, y0, y1
def predict(model, cti, wti, itt, filename):
data = dataloader(hre = HRE)
with open(filename) as fo:
text = fo.read().strip().split("\n" * (HRE + 1))
for block in text:
data.append_row()
for line in block.split("\n"):
if re.match("\S+/[^ /]+( \S+/[^ /]+)*$", line): # word/tag
x0, y0 = zip(*[re.split("/(?=[^/]+$)", w) for w in line.split(" ")])
x1 = list(map(normalize, x0))
else:
x0, y0 = line, []
if re.match("[^\t]+\t[^\t]+$", x0): # sentence \t label
x0, *y0 = x0.split("\t")
x0 = tokenize(x0)
x1 = list(map(normalize, x0))
xc = [[cti[c] if c in cti else UNK_IDX for c in w] for w in x1]
xw = [wti[w] if w in wti else UNK_IDX for w in x1]
data.append_item(x0 = x0, x1 = x1, xc = xc, xw = xw, y0 = y0)
return run_model(model, data, itt)
if __name__ == "__main__":
if len(sys.argv) != 6:
sys.exit("Usage: %s model char_to_idx word_to_idx tag_to_idx test_data" % sys.argv[0])
result = predict(*load_model(sys.argv[1:5]), sys.argv[5])
func = tag_to_txt if TASK else lambda *x: x
for x0, y0, y1 in result:
if y0:
print(func(x0, y0))
print(func(x0, y1))