-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathpretraining_experiments.py
282 lines (266 loc) · 11.2 KB
/
pretraining_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Copyright 2025 Thousand Brains Project
# Copyright 2022-2024 Numenta Inc.
#
# Copyright may exist in Contributors' modifications
# and/or contributions to the work.
#
# Use of this source code is governed by the MIT
# license that can be found in the LICENSE file or at
# https://opensource.org/licenses/MIT.
import copy
import os
from dataclasses import asdict
import numpy as np
from benchmarks.configs.names import PretrainingExperiments
from tbp.monty.frameworks.config_utils.config_args import (
FiveLMMontyConfig,
MontyArgs,
MontyFeatureGraphArgs,
MotorSystemConfigCurvatureInformedSurface,
MotorSystemConfigNaiveScanSpiral,
PatchAndViewMontyConfig,
PretrainLoggingConfig,
SurfaceAndViewMontyConfig,
get_cube_face_and_corner_views_rotations,
)
from tbp.monty.frameworks.config_utils.make_dataset_configs import (
EnvironmentDataloaderPerObjectArgs,
ExperimentArgs,
PredefinedObjectInitializer,
get_object_names_by_idx,
)
from tbp.monty.frameworks.config_utils.policy_setup_utils import (
make_naive_scan_policy_config,
)
from tbp.monty.frameworks.environments import embodied_data as ED
from tbp.monty.frameworks.environments.two_d_data import NUMENTA_OBJECTS
from tbp.monty.frameworks.environments.ycb import (
DISTINCT_OBJECTS,
SHUFFLED_YCB_OBJECTS,
SIMILAR_OBJECTS,
)
from tbp.monty.frameworks.experiments import (
MontySupervisedObjectPretrainingExperiment,
)
from tbp.monty.frameworks.models.displacement_matching import DisplacementGraphLM
from tbp.monty.frameworks.models.sensor_modules import (
DetailedLoggingSM,
HabitatSurfacePatchSM,
)
from tbp.monty.simulators.habitat.configs import (
FiveLMMountHabitatDatasetArgs,
PatchViewFinderMountHabitatDatasetArgs,
SurfaceViewFinderMontyWorldMountHabitatDatasetArgs,
SurfaceViewFinderMountHabitatDatasetArgs,
)
# FOR SUPERVISED PRETRAINING: 14 unique rotations that give good views of the object.
train_rotations_all = get_cube_face_and_corner_views_rotations()
monty_models_dir = os.getenv("MONTY_MODELS")
fe_pretrain_dir = os.path.expanduser(
os.path.join(monty_models_dir, "pretrained_ycb_v10")
)
pre_surf_agent_visual_training_model_path = os.path.join(
fe_pretrain_dir, "supervised_pre_training_all_objects/pretrained/"
)
supervised_pre_training_base = dict(
experiment_class=MontySupervisedObjectPretrainingExperiment,
experiment_args=ExperimentArgs(
do_eval=False,
n_train_epochs=len(train_rotations_all),
),
logging_config=PretrainLoggingConfig(
output_dir=fe_pretrain_dir,
),
monty_config=PatchAndViewMontyConfig(
monty_args=MontyArgs(num_exploratory_steps=500),
learning_module_configs=dict(
learning_module_0=dict(
learning_module_class=DisplacementGraphLM,
learning_module_args=dict(
k=10,
match_attribute="displacement",
tolerance=np.ones(3) * 0.0001,
graph_delta_thresholds=dict(
patch=dict(
distance=0.001,
# Only first pose vector (point normal) is currently used
pose_vectors=[np.pi / 8, np.pi * 2, np.pi * 2],
principal_curvatures_log=[1, 1],
hsv=[0.1, 1, 1],
)
),
),
# NOTE: Learning works with any LM type. For instance you can use
# the following code to run learning with the EvidenceGraphLM:
# learning_module_class=EvidenceGraphLM,
# learning_module_args=dict(
# max_match_distance=0.01,
# tolerances={"patch": dict()},
# feature_weights=dict(),
# graph_delta_thresholds=dict(patch=dict(
# distance=0.001,
# pose_vectors=[np.pi / 8, np.pi * 2, np.pi * 2],
# principal_curvatures_log=[1, 1],
# hsv=[0.1, 1, 1],
# )),
# ),
# NOTE: When learning with the EvidenceGraphLM or FeatureGraphLM, no
# edges will be added to the learned graphs (also not needed for
# matching) while learning with DisplacementGraphLM is a superset of
# these, i.e. captures all necessary information to do inference with
# any three of the LM types.
)
),
motor_system_config=MotorSystemConfigNaiveScanSpiral(
motor_system_args=make_naive_scan_policy_config(step_size=5)
), # use spiral policy for more even object coverage during learning
),
dataset_class=ED.EnvironmentDataset,
dataset_args=PatchViewFinderMountHabitatDatasetArgs(),
train_dataloader_class=ED.InformedEnvironmentDataLoader,
train_dataloader_args=EnvironmentDataloaderPerObjectArgs(
object_names=get_object_names_by_idx(0, 10, object_list=DISTINCT_OBJECTS),
object_init_sampler=PredefinedObjectInitializer(rotations=train_rotations_all),
),
)
only_surf_agent_training_10obj = copy.deepcopy(supervised_pre_training_base)
only_surf_agent_training_10obj.update(
experiment_args=ExperimentArgs(
n_train_epochs=len(train_rotations_all),
do_eval=False,
),
monty_config=SurfaceAndViewMontyConfig(
monty_args=MontyFeatureGraphArgs(num_exploratory_steps=1000),
learning_module_configs=dict(
learning_module_0=dict(
learning_module_class=DisplacementGraphLM,
learning_module_args=dict(
k=10,
match_attribute="displacement",
tolerance=np.ones(3) * 0.0001,
graph_delta_thresholds=dict(
patch=dict(
distance=0.01,
pose_vectors=[np.pi / 8, np.pi * 2, np.pi * 2],
principal_curvatures_log=[1.0, 1.0],
hsv=[0.1, 1, 1],
)
),
),
),
),
sensor_module_configs=dict(
sensor_module_0=dict(
sensor_module_class=HabitatSurfacePatchSM,
sensor_module_args=dict(
sensor_module_id="patch",
features=[
"pose_vectors",
"pose_fully_defined",
"on_object",
"object_coverage",
"rgba",
"hsv",
"min_depth",
"mean_depth",
"principal_curvatures",
"principal_curvatures_log",
"gaussian_curvature",
"mean_curvature",
"gaussian_curvature_sc",
"mean_curvature_sc",
],
save_raw_obs=True,
),
),
sensor_module_1=dict(
# No need to extract features from the view finder since it is not
# connected to a learning module (just used at beginning of episode)
sensor_module_class=DetailedLoggingSM,
sensor_module_args=dict(
sensor_module_id="view_finder",
save_raw_obs=True,
),
),
),
motor_system_config=MotorSystemConfigCurvatureInformedSurface(),
),
dataset_class=ED.EnvironmentDataset,
dataset_args=SurfaceViewFinderMountHabitatDatasetArgs(),
logging_config=PretrainLoggingConfig(
output_dir=fe_pretrain_dir,
run_name="surf_agent_1lm_10distinctobj",
),
train_dataloader_class=ED.InformedEnvironmentDataLoader,
train_dataloader_args=EnvironmentDataloaderPerObjectArgs(
object_names=get_object_names_by_idx(0, 10, object_list=DISTINCT_OBJECTS),
object_init_sampler=PredefinedObjectInitializer(rotations=train_rotations_all),
),
)
only_surf_agent_training_10simobj = copy.deepcopy(only_surf_agent_training_10obj)
only_surf_agent_training_10simobj.update(
logging_config=PretrainLoggingConfig(
output_dir=fe_pretrain_dir,
run_name="surf_agent_1lm_10similarobj",
),
train_dataloader_args=EnvironmentDataloaderPerObjectArgs(
object_names=get_object_names_by_idx(0, 10, object_list=SIMILAR_OBJECTS),
object_init_sampler=PredefinedObjectInitializer(rotations=train_rotations_all),
),
)
only_surf_agent_training_allobj = copy.deepcopy(only_surf_agent_training_10obj)
only_surf_agent_training_allobj.update(
logging_config=PretrainLoggingConfig(
output_dir=fe_pretrain_dir,
run_name=f"surf_agent_1lm_{len(SHUFFLED_YCB_OBJECTS)}obj",
),
train_dataloader_args=EnvironmentDataloaderPerObjectArgs(
object_names=get_object_names_by_idx(
0, len(SHUFFLED_YCB_OBJECTS), object_list=SHUFFLED_YCB_OBJECTS
),
object_init_sampler=PredefinedObjectInitializer(rotations=train_rotations_all),
),
)
only_surf_agent_training_numenta_lab_obj = copy.deepcopy(only_surf_agent_training_10obj)
only_surf_agent_training_numenta_lab_obj.update(
logging_config=PretrainLoggingConfig(
output_dir=fe_pretrain_dir,
run_name="surf_agent_1lm_numenta_lab_obj",
),
dataset_args=SurfaceViewFinderMontyWorldMountHabitatDatasetArgs(),
train_dataloader_args=EnvironmentDataloaderPerObjectArgs(
object_names=get_object_names_by_idx(0, 12, object_list=NUMENTA_OBJECTS),
object_init_sampler=PredefinedObjectInitializer(rotations=train_rotations_all),
),
)
# TODO: these don't use the graph_delta_thresholds of the one LM experiments. Do we
# want to update that?
supervised_pre_training_5lms = copy.deepcopy(supervised_pre_training_base)
supervised_pre_training_5lms.update(
monty_config=FiveLMMontyConfig(
monty_args=MontyArgs(num_exploratory_steps=500),
motor_system_config=MotorSystemConfigNaiveScanSpiral(
motor_system_args=make_naive_scan_policy_config(step_size=5)
),
),
dataset_args=FiveLMMountHabitatDatasetArgs(),
)
supervised_pre_training_5lms_all_objects = copy.deepcopy(supervised_pre_training_5lms)
supervised_pre_training_5lms_all_objects.update(
train_dataloader_args=EnvironmentDataloaderPerObjectArgs(
object_names=get_object_names_by_idx(
0, len(SHUFFLED_YCB_OBJECTS), object_list=SHUFFLED_YCB_OBJECTS
),
object_init_sampler=PredefinedObjectInitializer(rotations=train_rotations_all),
),
)
experiments = PretrainingExperiments(
supervised_pre_training_base=supervised_pre_training_base,
supervised_pre_training_5lms=supervised_pre_training_5lms,
supervised_pre_training_5lms_all_objects=supervised_pre_training_5lms_all_objects,
only_surf_agent_training_10obj=only_surf_agent_training_10obj,
only_surf_agent_training_10simobj=only_surf_agent_training_10simobj,
only_surf_agent_training_allobj=only_surf_agent_training_allobj,
only_surf_agent_training_numenta_lab_obj=only_surf_agent_training_numenta_lab_obj,
)
CONFIGS = asdict(experiments)