forked from vinuesa/get_phylomarkers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_suppValStas_and_RF-dist.R
executable file
·386 lines (328 loc) · 18.8 KB
/
compute_suppValStas_and_RF-dist.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#!/usr/bin/env Rscript
# 19Ene16
# compute_suppValStas_and_RF-dist_of_geneTrees2concat_tree_automatically.R
VERSION <- 'Version: 0.7 - Nov. 28th, 2016' # improved graphical summary of SH-supp vals and RF-distances 2 concat tree
AUTHOR <- "Author: Pablo Vinuesa, CCG-UNAM"
REPOS <- "https://cran.itam.mx/"
# load/download required packages
# see require() vs. library() discussions in:
# http://yihui.name/en/2014/07/library-vs-require/
# http://stackoverflow.com/questions/5595512/what-is-the-difference-between-require-and-library
for (package in c('ape', 'stringr', 'ggplot2', 'gplots', 'plyr', 'seqinr')) {
if (!require(package, character.only=T, quietly=T)) {
sprintf("unable to locate %s, will install it for you from %s", package, REPOS)
install.packages(package, repos=REPOS)
# library(package, character.only=T)
}
#else{ library(package, character.only=T, quietly=T) ) } # don't load all packages to avoid namespace pollution/collision
}
# library(package, character.only=T) # don't load all packages to avoid namespace pollution/collision
# load the required seqinr apt and gplots::functions individually
for ( pkg in c("stringr", "ggplot2", "plyr") ){
library( pkg, character.only=T, quietly=T)
}
#-----------------------------
#>>> FUNCTION DEFINITIONS <<<#
#-----------------------------
print_help <- function(){
cat("", "AIM: Computes and plots tree support value stats and gene2concatTree RF-distances",
VERSION, AUTHOR,
"",
">>> Usage: ~/R_code/scripts/compute_phyloStats_and_geneTrees2concatTree_RF-dist_autom.R <full_path2_ph_files> <Runmode> <aln_ext> <tree_ext> <genoFlag[0|1]> [basegraphs|ggplots]",
"",
">>> Notes:",
"# 1. ARGUMENTS:",
"runmodes: 1 ==> get only tree support stats; 2 ==> compute also RF genetree2concat-tree distances",
"genoFlag: 0 ==> a standard MLSA/MLST set, with < 20 loci/trees; 1 ==> a genomic dataset with >> 20 loci/trees",
"",
"# ASSUMPTIONS ON DATA:",
" The sequences should be collapsed to haplotypes",
" but beware that the R code below complains when the tree labels",
" contain '#' symbols, as introduced by collapse2haplotypes.pl",
" so use a line like the following to change # by - in the collapsed fastas (or on the trees)",
" for file in *FAS; do collapse2haplotypes.pl $file | awk '{print $1, $2}' | perl -pe 'if(/^>/){ s/\\h/_/ }' | sed 's/#/-/' > ${file}UNIQ; done",
" or: for file in *ph; do sed 's/#/-/ $file > ${file}ed; done",
" IMPORTANT: remove trees collapsed with very few leaves: ls -l *ph | awk '{if ($5 < 250) print $9}' | tee -a filelog | xargs rm",
"",
"TODO:",
"1. add progress messages to STDOUT ...",
"2. Need to check trees for no. of leaves; skip those with lt 4 leaves from within the script",
"3. Need to check why ggplots are not working when invoked as a script, but work when executing lines from rstudio",
"4. Integrate code from run_kdetrees",
"",
sep ="\n")
}
#-----------------------------------------------------------------------
# see http://www.inside-r.org/r-doc/base/file.copy
# for details on file manipulation from R
checkFileCreated <- function(F){
if( file.exists(F) ){
sprintf("File %s was created", F)
}else{
sprintf("WARNING: File %s could not be written to disk!", F)
}
}
#-----------------------------------------------------------------------
#-------------
#>>> MAIN <<<#
#-------------
# Notes on passing argument to the script
# add something like getops to pass the working dir to setwd()
# see: http://tuxette.nathalievilla.org/?p=1696
# https://cran.r-project.org/doc/manuals/R-intro.html#Scripting-with-R
# see also
# https://cwcode.wordpress.com/2013/04/16/the-joys-of-rscript/
# http://stackoverflow.com/questions/14167178/passing-command-line-arguments-to-r-cmd-batch
# https://shihho.wordpress.com/2012/11/30/r-how-to-run-r-scripts-in-batch-mode-with-arguments/
# get the usr arguments
args = commandArgs(trailingOnly=TRUE)
# test if there is at least one argument: if not, return an error
if (length(args) < 5) {
print_help()
stop("requires at least 5 arguments: <full_path2_ph_files> <Runmode> <aln_ext> <tree_ext> <genoFlag[0|1]> [basegraphs|ggplots]\n", call.=FALSE)
} else if (length(args) >= 5 & length(args) < 7 ) {
sprintf("Will run with args: %s, %s, %s, %s, %s, %s", args[1], args[2], args[3], args[4], args[5], args[6])
}
# set the working dir containing the tree files
cat("will setwd as: ", args[1], "\n")
setwd(args[1])
runmode <- args[2]
aln_ext <- args[3]
tree_ext <- args[4]
genoFlag <- args[5]
if (length(args) == 5) {
GraphSyst <- "basegraphs"
}else if (length(args) == 6){
GraphSyst <- as.character(args[6])
}
#-------------------------------------------------#
#>>> PARALLEL BOXPLOTS FOR TREE SUPPORT VALUES <<<#
#-------------------------------------------------#
# 1. get all tree files with extension .ph
# IMPORTANT NOTE: the sequences should be collapsed to haplotypes
# but beware that the R code below complains when the tree labels
# contain '#' symbols, as introduced by collapse2haplotypes.pl
# so use a line like the following to change # by - in the collapsed fastas (or on the trees)
# for file in *FAS; do collapse2haplotypes.pl $file | awk '{print $1, $2}' | perl -pe 'if(/^>/){ s/\h/_/ }' | sed 's/#/-/ > ${file}UNIQ; done
# for file in *ph; do sed 's/#/-/ $file > ${file}ed; done
# 1. get the list of tree files
# >>> pass the tree_ext arg to list.files() funct as a regex
tree_rgx <- paste("\\.", tree_ext, "$", sep = "")
files <- list.files(pattern = tree_rgx)
# check there are tree files with tree_ext extension in the working directory
if(length(files) == 0) stop("There are no tree files with", tree_ext, " extension in the working directory! Will stop now ...")
# 2. initialize vars
supp.dfr <- c()
aln.len.dfr <- c()
supp.vals <- c()
br.lens <- c()
br.dfr <- c()
br.lens.dfr <- c()
fac <- c()
aln_files <- c()
aln_rgx <- c()
# 2.1. get the gene names out of the tree file names. strsplit produces a list;
# get the 1st elements of each vector out of the list
gene.names <- strsplit(files, '_')
genes <- as.character(lapply(gene.names, "[[", 1))
# 2.2 GET ALIGNMENT LENGTHs for each input file and save them into aln.len.dfr
aln_rgx <- paste("\\.", aln_ext, "$", sep = "")
aln_files <- list.files(pattern = aln_rgx)
for (i in 1:length(aln_files) ){
aln <- seqinr::read.alignment(file = aln_files[i], format = "fasta")
aln.lens <- as.numeric(nchar(aln$seq[[1]])); aln.dfr <- data.frame(genes[i], aln.lens)
aln.len.dfr <- rbind(aln.len.dfr, aln.dfr)
}
# 2.3 add colnames to the cleaned dfr
colnames(aln.len.dfr) <- c("loci", "aln_length")
# 3. loop over files, read.trees and get support values; add those and corresponding factor level to intermediate dfr; finally rbind(supp.dfr, dfr)
#for (i in 1:length(files) ){ tr <- read.tree(files[i]); supp.vals <- as.numeric(tr$node.label); fac <- rep(i, length(supp.vals)); dfr <- data.frame(fac, supp.vals); supp.dfr <- rbind(supp.dfr, dfr) }
for (i in 1:length(files) ){ tr <- ape::read.tree(files[i]); supp.vals <- as.numeric(tr$node.label); fac <- rep(genes[i], length(supp.vals)); dfr <- data.frame(fac, supp.vals); supp.dfr <- rbind(supp.dfr, dfr) }
# 3.1 remove any rows containing NAs in supp.dfr
supp.dfr <- supp.dfr[complete.cases(supp.dfr), ]
# 3.2 add colnames to the cleaned dfr
colnames(supp.dfr) <- c("loci", "support.values")
# 3.3 use the aggregate function to plot the median support values
# notice the use of plyr::each()
aggr.supp.val.stats.dfr <- aggregate(support.values ~ loci, supp.dfr, each(median, mean, var, sd, length) )
aggr.supp.val.median.dfr <- aggregate(support.values ~ loci, supp.dfr, median)
aggr.supp.val.mean.dfr <- aggregate(support.values ~ loci, supp.dfr, mean)
aggr.supp.val.mean.dfr <- merge(aggr.supp.val.mean.dfr, aln.len.dfr, by = "loci")
aggr.supp.val.mean.dfr$signal <- c(100 * (aggr.supp.val.mean.dfr$support.values / aggr.supp.val.mean.dfr$aln_length) )
med_supp_val <- median(aggr.supp.val.mean.dfr$support.values)
mean_supp_val <- mean(aggr.supp.val.mean.dfr$support.values)
quant070_supp_val <- quantile(aggr.supp.val.mean.dfr$support.values, probs = 0.70)
quant030_supp_val <- quantile(aggr.supp.val.mean.dfr$support.values, probs = 0.30)
stdevs_supp_val <- mean_supp_val + c(-2, -1, +1, +2)*sd(aggr.supp.val.mean.dfr$support.values)
write.table(aggr.supp.val.mean.dfr[order(aggr.supp.val.mean.dfr$support.values, decreasing = T), ], file="sorted_aggregated_support_values4loci.tab", row.names = FALSE, sep ="\t")
checkFileCreated("sorted_aggregated_support_values4loci.tab")
# save orignal par() params to opar
# no.readonly = TRUE; only parameters are returned which can be set by a subsequent par() call _on the same device_.
opar <- par(no.readonly = TRUE)
# 3.4 order the dfr by support.values
if(genoFlag == 1){
aggr.supp.val.mean.decr.ord.dfr <- aggr.supp.val.mean.dfr[order(aggr.supp.val.mean.dfr$support.values, decreasing = TRUE), ]
no.trees <- dim(aggr.supp.val.stats.dfr)[1]
# Make scatterplots; here need to make a faceted plot, to include boxplot and distribution wiht density
if(GraphSyst == "basegraphs"){
svg("scatterplot_for_gene_tree_support_values.svg")
par(mfrow=c(2,1))
cols <- ifelse(aggr.supp.val.mean.dfr$support.values >= quant070_supp_val, "black", "grey")
plot(aggr.supp.val.mean.dfr$support.values, xaxt='n', main=sprintf("Mean SH-support values for %s gene trees (+-1 & 2 SD)", no.trees), xlab="loci", ylab="SH-support values", col=cols )
abline(h=mean_supp_val, lwd = 2, col = "black") # "lty = 1# solid"
# abline(h=med_supp_val, lty = "dotted", lwd = 2, col = "black") # "lty = "dotted" # solid"
abline(h=stdevs_supp_val, lty = 2, lwd = 2, col = "grey") # "dashed"
hist(aggr.supp.val.mean.dfr$support.values, 30, main ="Histogram of mean SH-support values", xlab="SH-support values", prob = TRUE)
lines(density(aggr.supp.val.mean.dfr$support.values))
dev.off()
par(opar)
}else if (GraphSyst == "ggplots"){
# see http://www.cookbook-r.com/Graphs/Axes_%28ggplot2%29/#setting-tick-mark-labels
# http://www.cookbook-r.com/Graphs/Titles_%28ggplot2%29/
# ggplot(data=aggr.supp.val.mean.dfr, aes(y=support.values, x = loci) ) + geom_point() + theme(axis.title.x = element_blank(), axis.text.x = element_blank() ) + labs(title="Median SH-support values for no.trees gene trees")
svg("scatterplot_for_gene_tree_support_values.svg")
print("GrahSyst=ggplot ==> scatterplot_for_gene_tree_support_values.svg")
g <- ggplot(data = aggr.supp.val.mean.dfr, aes(y = support.values, x = loci) )
g + geom_point() + theme(axis.title.x = element_blank(), axis.text.x = element_blank() ) + ggtitle("Median SH-support values for gene trees") + theme(plot.title = element_text(lineheight=.8, face="bold") )
dev.off()
}
checkFileCreated("scatterplot_for_gene_tree_support_values.svg")
aggr.supp.val.median.top100.dfr <- head(aggr.supp.val.mean.decr.ord.dfr, 100)
sink(file = "top100_median_support_values4loci.tab", type=c("output") )
print(aggr.supp.val.median.top100.dfr)
sink()
checkFileCreated("top100_median_support_values4loci.tab")
}
# 4. AOV and plot group means with confidence inetaval (p = 0.95)
if(genoFlag < 1){
fit.aov <- aov(support.values ~ loci, supp.dfr)
sink(file = "summary_fit_AOV_support_values.out", type=c("output") )
summary(fit.aov)
sink()
checkFileCreated("summary_fit_AOV_support_values.out")
}
# 5. prepare diverse plots
if(genoFlag < 1){
svg(file="meanplot_for_bipartiton_support_values_with_095CI.svg")
gplots::plotmeans(support.values ~ loci, supp.dfr, main=c("Mean tree support values/locus and 95% CIs") )
dev.off()
checkFileCreated("meanplot_for_bipartiton_support_values_with_095CI.svg")
# 4. Plot the parallel boxplots; note the use of notch and names
svg(file="parallel_boxplots_for_bipartiton_support_values.svg")
if(GraphSyst == "basegraphs"){
boxplot(support.values ~ loci, data = supp.dfr, notch = TRUE, names=genes, las = 2, main="SH-like support values", ylab="SH-support values")
dev.off()
}else if (GraphSyst == "ggplots"){
ggplot(data=supp.dfr, aes(y = support.values, x = loci)) + geom_boxplot(aes(group = loci), notch = TRUE)
dev.off()
}
checkFileCreated("parallel_boxplots_for_bipartiton_support_values.svg")
# 5. loop over files, read.trees and get support values; add those and corresponding factor level to intermediate dfr; finally rbind(supp.dfr, dfr)
for (i in 1:length(files) ){ tr <- read.tree(files[i]); br.lens <- tr$edge.length; fac <- rep(i, length(br.lens)); br.dfr <- data.frame(fac, br.lens); br.lens.dfr <- rbind(br.lens.dfr, br.dfr) }
svg(file="parallel_boxplots_for_branch_lengths.svg")
boxplot(br.lens ~ fac, data = br.lens.dfr, notch = FALSE, names=genes, las = 2, main="Tree branch lengths boxplot analysis", ylab="tree branch length")
dev.off()
checkFileCreated("parallel_boxplots_for_branch_lengths.svg")
}
# exit here if runmode == 1
if(runmode == 1) q(save = "no")
#---------------------------------------------------------------------------------------------------------------#
#>>> Compute Robinson-Foulds distances between the concatenated phylo and the individual (source) gene trees <<<#
#---------------------------------------------------------------------------------------------------------------#
# 0. get the list of "\\.ph$" files
tree_rgx <- paste("\\.", tree_ext, "$", sep = "")
files <- list.files(pattern = tree_rgx)
# check there are tree files with .ph extension in the working directory
if(length(files) == 0) stop("There are no tree files with .ph extension in the working directory! Will stop now ...")
# 1. filter out the concatenated and the gene trees and make sure it exists or stop
concat_tree_rgx <- paste("^concat.*", "\\.", tree_ext, "$", sep = "")
concat.tree.file <- str_extract(files, concat_tree_rgx)
concat.tree.file <- concat.tree.file[!is.na(concat.tree.file)]
if( length(concat.tree.file) < 1 ) stop("There is no concat file in the working directory! Will exit now ...")
concat_tree <- read.tree(concat.tree.file)
gene.tree.files <- files[grep("concat.*", files, invert = TRUE)]
# 2. extract the gene names from the file names; see p. 103-104 R in action
gene.names <- strsplit(gene.tree.files, '_')
#genes <- as.character(lapply(gene.names, "[[", 1))
genes <- sapply(gene.names, "[", 1)
# 3. Compute the RF-scores
# print the out once to screen
if(genoFlag == 0){
for ( i in 1:length(gene.tree.files)){ gene.tree <- read.tree(gene.tree.files[i]); print(dist.topo(concat_tree, gene.tree, "score")) }
}
if(genoFlag == 0){
# 3.1 capture the output to file
concat_vs_gene_scoreMat <- capture.output(for ( i in 1:length(gene.tree.files)){ gene.tree <- read.tree(gene.tree.files[i]); print(gene.tree.files[i]); print(dist.topo(concat_tree, gene.tree, "score")) })
sink("gene_vs_concat_scoreMat.out", type=c("output") )
# print(genes)
print(as.data.frame(concat_vs_gene_scoreMat))
sink()
checkFileCreated("gene_vs_concat_scoreMat.out")
}
# 3.2 capture the RF-scores in a vector to plot a barplot; take the gene names from genes
topo.vec <-c()
for ( i in 1:length(gene.tree.files)){ gene.tree <- read.tree(gene.tree.files[i]); top.dist<-(dist.topo(concat_tree, gene.tree, "score")); topo.vec <-c(topo.vec, top.dist) }
RF.dfr <- data.frame(genes,topo.vec)
colnames(RF.dfr) <- c("loci", "RF_dist")
# 3.3 print summary_stats_RFdist summary_stats_aggr_suppVal_medians to file
sink( file = "summary_stats_RFdist.out", type=c("output") )
summary(RF.dfr$RF_dist)
checkFileCreated("summary_stats_RFdist.out")
sink(file = "summary_stats_aggr_suppVal_medians.out", type=c("output") )
summary(aggr.supp.val.mean.dfr$support.values)
checkFileCreated("summary_stats_aggr_suppVal_medians.out")
# 3.4 compute the quantiles RF.30quant aggr.supp.val.mean.070quant to filter out best markers
#RF.30quant <- quantile(RF.dfr$RF_dist, probs = 0.10)
RF.30quant <- quantile(RF.dfr$RF_dist, probs = 0.3)
RFdist_mean <- mean(RF.dfr$RF_dist)
RFdist_stdevs <- RFdist_mean + c(-2, -1, +1, +2)*sd(RF.dfr$RF_dist)
#aggr.supp.val.mean.070quant <- quantile(aggr.supp.val.mean.dfr$support.values, probs = 0.70)
#aggr.supp.val.median.signal.075quant <- quantile(aggr.supp.val.mean.dfr$signal, probs = 0.75)
# 4. merge support and RFdist dfrs.
support_plus_RFdist.dfr <- merge(aggr.supp.val.mean.dfr, RF.dfr, by="loci")
support_plus_RFdist_ord.dfr <- support_plus_RFdist.dfr[order(support_plus_RFdist.dfr$RF_dist, decreasing = FALSE), ]
write.table(support_plus_RFdist_ord.dfr, file = "gene_trees2_concat_tree_RF_distances.tab", row.names = FALSE, sep = "\t" )
checkFileCreated("gene_trees2_concat_tree_RF_distances.tab")
# 5. filter dfr for high qual loci ( supp.val >= 0.75 quantile & RF dist <= 0.10 quantile)
if(genoFlag == 1){
# & support_plus_RFdist_ord.dfr$signal >= aggr.supp.val.median.signal.075quant
top_markers.dfr <- support_plus_RFdist_ord.dfr[support_plus_RFdist_ord.dfr$support.values >= mean_supp_val & support_plus_RFdist_ord.dfr$RF_dist <= RF.30quant & support_plus_RFdist_ord.dfr$aln_length > 180, ]
no.mark <- nrow(top_markers.dfr)
#file_name <- sprintf("top %s markers suppVal gt075quant RFdist lt 010quant.out", no.mark)
#file_name <- str_replace_all(string = file_name, pattern = "\\s", replacement = "_")
#sink(file = file_name)
#print(top_markers.dfr)
#sink()
#checkFileCreated(file_name)
tab_file_name <- sprintf("top %s markers suppVal gt70quant RFdist lt30quant.tab", no.mark)
tab_file_name <- str_replace_all(string = tab_file_name, pattern = "\\s", replacement = "_")
write.table(top_markers.dfr, file=tab_file_name, row.names = FALSE, sep = "\t")
checkFileCreated( tab_file_name ) # does not check it! neither with or withour print; complains with cat!?
}
# 6. barplots/scatterplots of RF-dist_of_gene_trees2concat_phylo
if(genoFlag == 0){
svg(file="RF-dist_of_gene_trees2concat_phylo.svg")
if(GraphSyst == "basegraphs"){
barplot(topo.vec, names=genes, las = 2, main="RF-dist of gene-trees to concat-phylogeny", ylab="RF-dist")
dev.off()
}else if(GraphSyst == "ggplots"){
ggplot(data=RF.dfr, aes(x=loci, y = RF_dist)) + geom_bar(stat = "identity")
dev.off()
}
dev.off()
checkFileCreated("RF-dist_of_gene_trees2concat_phylo.svg")
}else if(genoFlag == 1){
svg("scatterplot_RF-dist_of_gene_trees2concat_phylo.svg")
par(mfrow=c(2,1))
cols <- ifelse(support_plus_RFdist.dfr$RF_dist <= RF.30quant, "black", "grey")
plot(support_plus_RFdist.dfr$RF_dist, xaxt='n', main = sprintf("RF-dist. of %s gene trees to concat. tree (mean-+1&2SD)", no.trees), xlab="loci", ylab="RF-distance", col=cols )
abline(h=RFdist_mean, lwd = 2, col = "black") # "lty = 1# solid"
abline(h=RFdist_stdevs, lty = 2, lwd = 2, col = "grey") # "dashed"
hist(RF.dfr$RF_dist, 30, main ="Histogram and density estimate of RF distances", xlab="RF-distance", prob = TRUE)
lines(density(RF.dfr$RF_dist))
dev.off()
par(opar)
checkFileCreated("scatterplot_RF-dist_of_gene_trees2concat_phylo.svg")
}
# exit without saving workspace
q(save = "no")