You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am attempting to combine anndata objects that are outputted from Seurat (which contains the UMAP scRNAseq clusterting) and Velocyto (which contains the count matrices) so that I can perform RNA velocity analysis on cells while also knowing their IDs.
I have been trying this for a little while and wanted some advice on how to proceed.
Here's the underlying structure of the seurat anndata:
To my understanding, it then seems that I need an object that contains:
A .obs element "clusters"
A .obsm element containing "X_umap"
Layers containing at least "spliced" and "unspliced"
Do I need other features?
Additionally then, what would be the best way to proceed with the merging of the objects?
There seem to be 45 cells that did not pass our QC in seurat, so I imagine subsetting out the vast majority that did from the velocyto object is necessary.
Then, from the subsetted veloctyo object, should I try to extract its features and copy them to the seurat object, or vice versa? I imagine it may be a little easier to copy the smaller seurat object onto the velocyto object, especially since I assume we are working on the data present in the velocyto.X.
However, I still don't fully understand why there's a vast difference in the number of variables seen. What should I do for all of the variables which don't have data in the seurat object? Or do I not need to worry about it since I may only need to add observations (and observation matricies) to the velocyto object?
Thank you so much for your continued help in this process. scVelo seems like a very powerful and exciting tool to work with!
This discussion was converted from issue #1170 on February 22, 2024 07:39.
Heading
Bold
Italic
Quote
Code
Link
Numbered list
Unordered list
Task list
Attach files
Mention
Reference
Menu
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
Hello,
I am attempting to combine anndata objects that are outputted from Seurat (which contains the UMAP scRNAseq clusterting) and Velocyto (which contains the count matrices) so that I can perform RNA velocity analysis on cells while also knowing their IDs.
I have been trying this for a little while and wanted some advice on how to proceed.
Here's the underlying structure of the seurat anndata:
And here is the underlying structure of the velocyto anndata:
Lastly, here's the layout of the example Pancreas dataset for the RNA velocity tutorial:
To my understanding, it then seems that I need an object that contains:
Do I need other features?
Additionally then, what would be the best way to proceed with the merging of the objects?
There seem to be 45 cells that did not pass our QC in seurat, so I imagine subsetting out the vast majority that did from the velocyto object is necessary.
Then, from the subsetted veloctyo object, should I try to extract its features and copy them to the seurat object, or vice versa? I imagine it may be a little easier to copy the smaller seurat object onto the velocyto object, especially since I assume we are working on the data present in the velocyto.X.
However, I still don't fully understand why there's a vast difference in the number of variables seen. What should I do for all of the variables which don't have data in the seurat object? Or do I not need to worry about it since I may only need to add observations (and observation matricies) to the velocyto object?
Thank you so much for your continued help in this process. scVelo seems like a very powerful and exciting tool to work with!
Beta Was this translation helpful? Give feedback.
All reactions