diff --git a/CHANGELOG.md b/CHANGELOG.md
index e7b7808..c185628 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -12,4 +12,4 @@ and this project adheres to [Semantic Versioning][].
### Added
-- Basic tool, preprocessing and plotting functions
+- Basic tool, preprocessing and plotting functions
diff --git a/docs/api.md b/docs/api.md
index c2ab7a7..32f55e9 100644
--- a/docs/api.md
+++ b/docs/api.md
@@ -37,7 +37,19 @@
dt.mimic_iv_omop
dt.gibleed_omop
dt.synthea27nj_omop
- dt.mimic_ii
+ dt.physionet2012
+```
+
+## Tools
+
+```{eval-rst}
+.. module:: ehrdata.tl
+.. currentmodule:: ehrdata
+
+.. autosummary::
+ :toctree: generated
+
+ tl.omop.EHRDataset
```
## Plotting
diff --git a/docs/contributing.md b/docs/contributing.md
index 8a9b28d..1f20499 100644
--- a/docs/contributing.md
+++ b/docs/contributing.md
@@ -155,11 +155,11 @@ This will automatically create a git tag and trigger a Github workflow that crea
Please write documentation for new or changed features and use-cases.
This project uses [sphinx][] with the following features:
-- The [myst][] extension allows to write documentation in markdown/Markedly Structured Text
-- [Numpy-style docstrings][numpydoc] (through the [napoloen][numpydoc-napoleon] extension).
-- Jupyter notebooks as tutorials through [myst-nb][] (See [Tutorials with myst-nb](#tutorials-with-myst-nb-and-jupyter-notebooks))
-- [sphinx-autodoc-typehints][], to automatically reference annotated input and output types
-- Citations (like {cite:p}`Virshup_2023`) can be included with [sphinxcontrib-bibtex](https://sphinxcontrib-bibtex.readthedocs.io/)
+- The [myst][] extension allows to write documentation in markdown/Markedly Structured Text
+- [Numpy-style docstrings][numpydoc] (through the [napoloen][numpydoc-napoleon] extension).
+- Jupyter notebooks as tutorials through [myst-nb][] (See [Tutorials with myst-nb](#tutorials-with-myst-nb-and-jupyter-notebooks))
+- [sphinx-autodoc-typehints][], to automatically reference annotated input and output types
+- Citations (like {cite:p}`Virshup_2023`) can be included with [sphinxcontrib-bibtex](https://sphinxcontrib-bibtex.readthedocs.io/)
See scanpy’s {doc}`scanpy:dev/documentation` for more information on how to write your own.
@@ -183,10 +183,10 @@ please check out [this feature request][issue-render-notebooks] in the `cookiecu
#### Hints
-- If you refer to objects from other packages, please add an entry to `intersphinx_mapping` in `docs/conf.py`.
- Only if you do so can sphinx automatically create a link to the external documentation.
-- If building the documentation fails because of a missing link that is outside your control,
- you can add an entry to the `nitpick_ignore` list in `docs/conf.py`
+- If you refer to objects from other packages, please add an entry to `intersphinx_mapping` in `docs/conf.py`.
+ Only if you do so can sphinx automatically create a link to the external documentation.
+- If building the documentation fails because of a missing link that is outside your control,
+ you can add an entry to the `nitpick_ignore` list in `docs/conf.py`
(docs-building)=
diff --git a/docs/index.md b/docs/index.md
index 7065d92..324eab5 100644
--- a/docs/index.md
+++ b/docs/index.md
@@ -17,4 +17,5 @@ notebooks/cohort_definition
notebooks/study_design_example_omop_cdm
notebooks/indwelling_arterial_catheters
notebooks/tutorial_time_series_with_pypots
+notebooks/omop_ml
```
diff --git a/docs/notebooks/omop_ml.ipynb b/docs/notebooks/omop_ml.ipynb
new file mode 100644
index 0000000..25c6b63
--- /dev/null
+++ b/docs/notebooks/omop_ml.ipynb
@@ -0,0 +1,765 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The autoreload extension is already loaded. To reload it, use:\n",
+ " %reload_ext autoreload\n"
+ ]
+ }
+ ],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Deep Learning on Timeseries for the OMOP CDM with ehrdata\n",
+ "ehrdata offers a deep learning convenience map-style [pytorch dataset](https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset), EHRDataset.\n",
+ "This is the input for pytorch's Dataloader, the canonical data loading structure for deep learning models in pytorch.\n",
+ "\n",
+ "For more information on the OMOP Common Data Model (CDM), see the notebook on the [OMOP CDM](./omop_tables_tutorial.ipynb).\n",
+ "\n",
+ "For more information on advanced time series algorithms, see the notebook on [Time Series Analysis with ehrdata and PyPOTS](./tutorial_time_series_with_pypots.ipynb)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Introduction\n",
+ "Disclaimer: the example usecase is for demonstration purposes only. The data preprocessing, the task definition, and the model setup are meant to be introductory. And as such lack the complexity required for proper inference. But flexible enough to build exactly this on top of it.\n",
+ "\n",
+ "## Worked example: Predict in-hospital mortality of ICU patients\n",
+ "We consider the task of predicting the in-hospital mortality of ICU patients, using public [MIMIC-IV demo dataset in the OMOP Common Data Model](https://physionet.org/content/mimic-iv-demo-omop/0.9/).\n",
+ "\n",
+ "Dataset:
\n",
+ "Kallfelz, M., Tsvetkova, A., Pollard, T., Kwong, M., Lipori, G., Huser, V., Osborn, J., Hao, S., & Williams, A. (2021). MIMIC-IV demo data in the OMOP Common Data Model (version 0.9). PhysioNet. https://doi.org/10.13026/p1f5-7x35."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Imports\n",
+ "We start with the required imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 267,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import duckdb\n",
+ "import numpy as np\n",
+ "from torch.utils.data import DataLoader\n",
+ "\n",
+ "import ehrdata as ed\n",
+ "import ehrapy as ep"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Setup the database\n",
+ "We use the plug-and-play ehrdata dataset, and duckdb as our RDMS.\n",
+ "#### Setup a local database connection"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 268,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "con = duckdb.connect(\":memory:\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Download the data, and load it into the database\n",
+ "Convenience dataset available from ehrdata."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 269,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ed.dt.mimic_iv_omop(backend_handle=con)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Define the Cohort\n",
+ "We start off by considering only patients with a `visit_occurrence` in ICU (`visit_concept_id` in `visit_detail` for ICU: In this dataset, we choose the OMOP Concept IDs\n",
+ "- 4305366 for Surgical ICU\n",
+ "- 40481392 for Medical ICU\n",
+ "- 32037 for Intensive Care\n",
+ "- 763903 for Trauma ICU\n",
+ "- 4149943 for Cardiac ICU\n",
+ "\n",
+ "If a person had multiple such ICU stays, we select the first.\n",
+ "\n",
+ "There are better ways than to delete rows in `visit_occurrence` which do not satisfy our cohort definition from our database, for the toy example this is the fastest."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 270,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 270,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "con.execute(\"\"\"\n",
+ " WITH RankedVisits AS (\n",
+ " SELECT\n",
+ " v.*,\n",
+ " vd.*,\n",
+ " ROW_NUMBER() OVER (PARTITION BY v.person_id ORDER BY v.visit_start_date) AS rn\n",
+ " FROM visit_occurrence v\n",
+ " JOIN visit_detail vd USING (visit_occurrence_id)\n",
+ " WHERE vd.visit_detail_concept_id IN (4305366, 40481392, 32037, 763903, 4149943)\n",
+ " ),\n",
+ " first_icu_visit_occurrence_id AS (\n",
+ " SELECT visit_occurrence_id\n",
+ " FROM RankedVisits\n",
+ " WHERE rn = 1\n",
+ " )\n",
+ " DELETE FROM visit_occurrence\n",
+ " WHERE visit_occurrence_id NOT IN (SELECT visit_occurrence_id FROM first_icu_visit_occurrence_id)\n",
+ "\"\"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Define the variables of interest and the time windows.\n",
+ "For more information of how we can convert the irregularly-sampled time series into a missing data problem by discretizing the time axis into non-overlapping intervals, see the Notebook on [Extracting, Representing, Validating and Vizualizing Data from an OMOP CDM Database with ehrdata, lamin, and Vitessce](./tutorial_omop_visualization.ipynb).\n",
+ "\n",
+ "Here, we decide for the following:\n",
+ "- We have for each person (n=100) one in-hospital stay; take the start of this hospital stay as the starting point (t=0) for each patient.\n",
+ "- We consider time-intervals of 1h, for 24h; that is, the first day after ICU admission. If for a patient less recorded data is available, the missing data is padded.\n",
+ "- We consider the data from the `measurements` table; we consider the numeric `value_as_number` values.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We now set up the persons to be considered, together with their observation start and endtimes, retrieved from the `visit_occurrence` table."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 271,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "edata = ed.io.omop.setup_obs(\n",
+ " backend_handle=con,\n",
+ " observation_table=\"person_visit_occurrence\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In the next step, we retrieve all `value_as_number` entries from the `measurements` table:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 272,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:root:multiple units for features: [[ 1]\n",
+ " [ 7]\n",
+ " [ 31]\n",
+ " [ 33]\n",
+ " [ 39]\n",
+ " [ 44]\n",
+ " [ 49]\n",
+ " [ 57]\n",
+ " [ 60]\n",
+ " [ 79]\n",
+ " [ 81]\n",
+ " [ 83]\n",
+ " [ 93]\n",
+ " [110]\n",
+ " [160]\n",
+ " [175]\n",
+ " [186]\n",
+ " [187]\n",
+ " [189]\n",
+ " [190]\n",
+ " [195]\n",
+ " [204]\n",
+ " [207]\n",
+ " [221]\n",
+ " [269]\n",
+ " [273]\n",
+ " [275]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "edata = ed.io.omop.setup_variables(\n",
+ " edata=edata,\n",
+ " backend_handle=con,\n",
+ " data_tables=[\"measurement\"],\n",
+ " data_field_to_keep=[\"value_as_number\"],\n",
+ " interval_length_number=1,\n",
+ " interval_length_unit=\"h\",\n",
+ " num_intervals=24,\n",
+ " concept_ids=\"all\",\n",
+ " aggregation_strategy=\"last\",\n",
+ " instantiate_tensor=False,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "NOTE: this could/should become an ehrdata API call.\n",
+ "\n",
+ "We drop features which are not measured in at least 10 patients 1x."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 273,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# delete all rows for which data_table_concept_id is NOT NULL in at least 10 different patient_id s\n",
+ "con.execute(\"\"\"\n",
+ " WITH concept_ids_to_delete AS (\n",
+ "\n",
+ " SELECT\n",
+ " data_table_concept_id\n",
+ " FROM long_person_timestamp_feature_value\n",
+ " WHERE value_as_number IS NOT NULL\n",
+ " GROUP BY data_table_concept_id\n",
+ " HAVING COUNT(DISTINCT person_id) <= 10\n",
+ "\n",
+ " UNION\n",
+ "\n",
+ " SELECT\n",
+ " data_table_concept_id\n",
+ " FROM long_person_timestamp_feature_value\n",
+ " GROUP BY data_table_concept_id\n",
+ " HAVING COUNT(value_as_number) = 0\n",
+ " )\n",
+ "\n",
+ " DELETE FROM long_person_timestamp_feature_value\n",
+ " WHERE data_table_concept_id IN (\n",
+ " SELECT data_table_concept_id FROM concept_ids_to_delete\n",
+ " );\n",
+ "\"\"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "NOTE: this could/should become an ehrdata API call.\n",
+ "\n",
+ "For model simpliclity, we conduct forward filling of the variables:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 274,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "con.execute(\"\"\"\n",
+ "WITH filled_measurements AS (\n",
+ " SELECT\n",
+ " person_id,\n",
+ " interval_step,\n",
+ " data_table_concept_id,\n",
+ " COALESCE(value_as_number,\n",
+ " LAST_VALUE(value_as_number IGNORE NULLS)\n",
+ " OVER (PARTITION BY person_id, data_table_concept_id\n",
+ " ORDER BY interval_step\n",
+ " ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)\n",
+ " ) AS filled_value\n",
+ " FROM long_person_timestamp_feature_value\n",
+ ")\n",
+ "UPDATE long_person_timestamp_feature_value\n",
+ "SET value_as_number = fm.filled_value\n",
+ "FROM filled_measurements as fm\n",
+ "WHERE long_person_timestamp_feature_value.person_id = fm.person_id\n",
+ "AND long_person_timestamp_feature_value.interval_step = fm.interval_step\n",
+ "AND long_person_timestamp_feature_value.data_table_concept_id = fm.data_table_concept_id;\n",
+ "\"\"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "And for all values not captured in forward fill, we impute the missing value for person x, feature f, time step t as the mean of all other persons feature f at timestep t."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 275,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "con.execute(\"\"\"\n",
+ "WITH feature_means AS (\n",
+ " SELECT\n",
+ " interval_step,\n",
+ " data_table_concept_id,\n",
+ " AVG(value_as_number) AS mean_value\n",
+ " FROM long_person_timestamp_feature_value\n",
+ " WHERE value_as_number IS NOT NULL\n",
+ " GROUP BY interval_step, data_table_concept_id\n",
+ "),\n",
+ "filled_values AS (\n",
+ " SELECT\n",
+ " lptfv.person_id,\n",
+ " lptfv.interval_step,\n",
+ " lptfv.data_table_concept_id,\n",
+ " COALESCE(lptfv.value_as_number, fm.mean_value) AS filled_value\n",
+ " FROM long_person_timestamp_feature_value lptfv\n",
+ " LEFT JOIN feature_means fm\n",
+ " ON lptfv.interval_step = fm.interval_step\n",
+ " AND lptfv.data_table_concept_id = fm.data_table_concept_id\n",
+ ")\n",
+ "UPDATE long_person_timestamp_feature_value\n",
+ "SET value_as_number = fm.filled_value\n",
+ "FROM filled_values as fm\n",
+ "WHERE long_person_timestamp_feature_value.person_id = fm.person_id\n",
+ "AND long_person_timestamp_feature_value.interval_step = fm.interval_step\n",
+ "AND long_person_timestamp_feature_value.data_table_concept_id = fm.data_table_concept_id;\n",
+ "\"\"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Deep Learning Model\n",
+ "#### Data Loading"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The tensor of shape n_obs x n_vars x num_intervals has been prepared in the RDBMS.\n",
+ "We can now create an `EHRDataset`, which is a subclass of pytorch's Dataset, and will stream the data for a deep learning model from the database."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 276,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dataset = ed.tl.omop.EHRDataset(con, edata, batch_size=5, idxs=None)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The `EHRDataset`, as subclass of pytorch's `Dataset`, can be used right away for creating a pytorch `Dataloader`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 277,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "loader = DataLoader(dataset, batch_size=4, shuffle=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Model definition\n",
+ "We create a simple model for time series based on a Recurrent Neural Network in pytorch.\n",
+ "More advanced models interoperable with ehrdata are showcased in [Time Series Analysis with ehrdata and PyPOTS](./tutorial_time_series_with_pypots.ipynb). However, PyPOTS does not support a pytorch Dataloader as input."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 278,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch.nn as nn\n",
+ "import torch.nn.functional as F\n",
+ "\n",
+ "\n",
+ "class RNN_Model(nn.Module):\n",
+ " \"\"\"RNN Model.\"\"\"\n",
+ "\n",
+ " def __init__(self, input_size, hidden_size, num_layers, num_classes):\n",
+ " super().__init__()\n",
+ " self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)\n",
+ " self.fc = nn.Linear(hidden_size, num_classes)\n",
+ "\n",
+ " def _prepare_batch(self, batch):\n",
+ " x, target = batch\n",
+ " return torch.transpose(x, 2, 1), target.flatten().to(torch.long)\n",
+ "\n",
+ " def forward(self, x):\n",
+ " \"\"\"Forward method.\"\"\"\n",
+ " # x: (batch_size, seq_len, input_size)\n",
+ " out, _ = self.rnn(x)\n",
+ " out = out[:, -1, :]\n",
+ "\n",
+ " # out: (batch_size, num_classes)\n",
+ " logits = self.fc(out)\n",
+ " return out, logits\n",
+ "\n",
+ " def training_step(self, batch):\n",
+ " \"\"\"Training step.\"\"\"\n",
+ " x, target = self._prepare_batch(batch)\n",
+ " out, logits = self(x)\n",
+ " loss = F.cross_entropy(logits, target)\n",
+ " return loss\n",
+ "\n",
+ " def fit(self, loader, epochs=10):\n",
+ " \"\"\"Fit method.\"\"\"\n",
+ " self.train_loss = []\n",
+ " optimizer = torch.optim.Adam(self.parameters(), lr=0.01)\n",
+ " for epoch in range(epochs):\n",
+ " batch_loss = []\n",
+ " for batch in loader:\n",
+ " optimizer.zero_grad()\n",
+ " loss = self.training_step(batch)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ "\n",
+ " batch_loss.append(loss.item())\n",
+ "\n",
+ " self.train_loss.append(np.mean(np.array(batch_loss)))\n",
+ " print(f\"Epoch {epoch}, Loss: {np.mean(np.array(batch_loss))}\")\n",
+ "\n",
+ " def predict(self, loader, soft=True):\n",
+ " \"\"\"Predict method.\"\"\"\n",
+ " predictions = []\n",
+ " with torch.no_grad():\n",
+ " for batch in loader:\n",
+ " x, target = self._prepare_batch(batch)\n",
+ " _, classification_logits = self(x)\n",
+ " if soft:\n",
+ " predicted = torch.softmax(classification_logits, 1)\n",
+ " else:\n",
+ " predicted = torch.max(classification_logits, 1)\n",
+ " predictions.append(predicted)\n",
+ " return torch.cat(predictions)\n",
+ "\n",
+ " def represent(self, loader):\n",
+ " \"\"\"Represent method.\"\"\"\n",
+ " representations = []\n",
+ " with torch.no_grad():\n",
+ " for batch in loader:\n",
+ " x, target = self._prepare_batch(batch)\n",
+ " output, _ = self(x)\n",
+ " representations.append(output)\n",
+ " return torch.cat(representations)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Model training"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 0, Loss: 0.3569712014496326\n",
+ "Epoch 1, Loss: 0.3650100648403168\n",
+ "Epoch 2, Loss: 0.3504540580511093\n",
+ "Epoch 3, Loss: 0.3471323770284653\n",
+ "Epoch 4, Loss: 0.3453905090689659\n"
+ ]
+ }
+ ],
+ "source": [
+ "model = RNN_Model(\n",
+ " input_size=129,\n",
+ " hidden_size=16,\n",
+ " num_layers=1,\n",
+ " num_classes=2,\n",
+ ")\n",
+ "model.fit(loader, epochs=5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Model prediction\n",
+ "Classification could look like this"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "tensor([[0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8645, 0.1355],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9056, 0.0944],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.8114, 0.1886],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9056, 0.0944],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8542, 0.1458],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.7546, 0.2454],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8678, 0.1322],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.8138, 0.1862],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945],\n",
+ " [0.9055, 0.0945]])"
+ ]
+ },
+ "execution_count": 280,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model.predict(loader)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Model representation\n",
+ "Futher, could illustrate patient representation:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 281,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "edata.obsm[\"last_step_representation\"] = np.array(model.represent(loader))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAGvCAYAAABhOfXIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADSf0lEQVR4nOzdd1wT9xsH8M9lA2HvjYiAgnvvgRTrtu6NWjvUVvtztdZata21tc5WbW1BWqvWXbXWLY6KdeEWVBRE2UP2yrjfH5RoSAIJJCyf9+uVl+bue8997xKSPHffwbAsy4IQQgghhBBCCDi1XQFCCCGEEEIIqSsoQSKEEEIIIYSQ/1CCRAghhBBCCCH/oQSJEEIIIYQQQv5DCRIhhBBCCCGE/IcSJEIIIYQQQgj5DyVIhBBCCCGEEPIfSpAIIYQQQggh5D+UIBFCCCGEEELIfyhB0oFUKsWCBQvg6uoKDoeDoUOH1naVSD139uxZMAyDs2fP1nZVKrRt2zb4+vqCz+fDwsKitqujN3FxcWAYBt99911tVwUAwDAMli5dWtvVUBIcHAwPD49Ky3l4eGDgwIGGr5Aa6v6OtK13Vfe1d+9evccmhBBSN+iUIC1duhQMwyA9PV3ten9/f/Tq1UvxvOzHB8Mw+PLLL9VuM378eDAMA7FYrHG/HTp0AMMw2Lx5s9r1YWFhiv0wDAORSARvb2/MmjULKSkp2h9gJUJDQ7Fq1SqMGDECv/76Kz766CONZXv16qVUJyMjI7Ro0QLr1q2DXC5XKvvqedq3b59KLHXnPTg4GAzDoEWLFmBZVmUbhmEwa9asahwtKRMREYGlS5ciKyuryjE2bdqEsLAwvdWpJkVHRyM4OBiNGzfGzz//jC1btqCgoABLly6t0cTu2bNnWLZsGTp06ABLS0vY2NigV69eOHXqVKXbTp8+HQzD1NoPeEJeN/fv38fSpUsRFxdX21UhhBCd1cgdJJFIhJ07d6osz8/Px8GDByESiTRu++jRI1y9ehUeHh7Yvn17hftZvnw5tm3bhh9++AFdunTB5s2b0blzZxQUFFT7GADgzJkzcHZ2xtq1azFx4kT07NmzwvIuLi7Ytm0btm3bhq+//hoikQgfffQRPvvsswqPQV3Co8mdO3ewf/9+rcsT3UVERGDZsmUGSZB69OiBwsJC9OjRo+oVNLCzZ89CLpdj/fr1CA4OxqhRo1BQUIBly5bVaIJ08OBBfPPNN/Dy8sKXX36Jzz77DLm5uQgMDMTWrVs1bnft2jWEhYVV+DlDGp6ff/4ZDx48qO1qvLbu37+PZcuWUYJECKmXaiRB6t+/P+7fv49bt24pLT948CBKSkoQGBiocdvff/8ddnZ2WL16NSIiIir8sH3zzTcxYcIEvP322wgLC8OcOXMQGxuLgwcP6uU4UlNTdWpeZG5ujgkTJmDChAmYM2cOzp8/D3d3d3z//feQyWQq5Vu1aoXbt2/jwIEDWsU3MjKCt7e3zklVReRyOYqKivQSSxv6Sl7rKw6HA5FIBA6n7rZ2TU1NBYAaaVqXn5+vcV3v3r0RHx+PHTt2YObMmZg9ezYiIiLg6+uLJUuWqN2GZVl8+OGHmDRpEuzt7Q1V7TqponP5OuDz+RAKhbVdjSp73V8/QgipTTXyq6xz585o1KgRduzYobR8+/bt6NevH6ysrDRuu2PHDowYMQIDBw6Eubm5SoyK9OnTBwAQGxtbYbn8/HzMnTsXrq6uEAqF8PHxwXfffadIOsqawIWHh+PevXuK5nC6Xj0XiURo3749cnNzFT86XzVmzBidEh4Oh4PFixfrlFSVV9YUb/v27fDz84NQKMSxY8cAAAkJCZg6dSrs7e0hFArh5+eH0NBQpe3L2uPv2rULixYtgoODA0xMTDB48GA8e/ZMqWyvXr3g7++P69evo0ePHjA2NsaiRYsAAMXFxfj888/h5eUFoVAIV1dXLFiwAMXFxUoxTp48iW7dusHCwgJisRg+Pj6KGGW0jVV27H/++Sf8/f0Vx1h2/EBp88b58+cDABo1aqR47csS9a1bt6JPnz6ws7ODUChEs2bNVJqCenh44N69ezh37pxi+7KmqJr6IO3Zswdt27aFkZERbGxsMGHCBCQkJCiVCQ4OhlgsRkJCAoYOHQqxWAxbW1vMmzdPbQJe3sGDBzFgwAA4OTlBKBSicePG+OKLL5S29fDwwOeffw4AsLW1BcMwCA4Ohq2tLQBg2bJlimN6te9MdHQ0RowYASsrK4hEIrRr1w6HDh1S2n9Z09hz585hxowZsLOzg4uLi8b6+vn5wcbGRmmZUChE//798fz5c+Tm5qpss23bNty9exdfffVVpedjy5YtaNy4MYRCIdq3b4+rV69Wug0AZGVl4aOPPoKHhweEQiFcXFwwadIkpSaxqampmDZtGuzt7SESidCyZUv8+uuvWsW/ceMG3nzzTZiZmUEsFiMgIAD//vuvUpnKzuXRo0fRvXt3mJiYwNTUFAMGDMC9e/dU9lX2tyASieDv71+lz5UTJ06gVatWEIlEaNasmdId7idPnoBhGKxdu1Zlu4iICDAMo7a1waueP3+OoUOHwsTEBHZ2dvjoo49U/rYB9X2Q/vjjD7Rt2xampqYwMzND8+bNsX79eqUy2ryeQOnFpK+++gouLi4QiUQICAhATEyMUpkLFy5g5MiRcHNzU3wWffTRRygsLFSpq1gsxuPHj9G/f3+Ymppi/PjxAIDCwkJ8+OGHsLGxgampKQYPHoyEhAS1/dW0+czWRJvPwzKVvSfDwsIwcuRIAKUXNtR9Z2r7niSEkNrAq6kdjR07Fr///jtWrlyp6E9z4sQJbNu2Te0HMABcvnwZMTEx2Lp1KwQCAd566y1s375d5QexJo8fPwYAWFtbayzDsiwGDx6M8PBwTJs2Da1atcLx48cxf/58JCQkYO3atbC1tcW2bdvw1VdfIS8vD19//TUAoGnTpjqehZfJlrqr8VwuF4sXL8akSZNw4MABvPXWW5XGGzduHL744gssX74cw4YNA8MwOtfpzJkz2L17N2bNmgUbGxt4eHggJSUFnTp1Unxp2tra4ujRo5g2bRpycnIwZ84cpRhfffUVGIbBwoULkZqainXr1qFv3764efMmjIyMFOUyMjLw5ptvYsyYMZgwYQLs7e0hl8sxePBg/PPPP3jnnXfQtGlT3LlzB2vXrsXDhw/x559/AgDu3buHgQMHokWLFli+fDmEQiFiYmJw8eJFRXxtY5X5559/sH//fsyYMQOmpqbYsGEDhg8fjvj4eFhbW+Ott97Cw4cPsXPnTqxdu1bxA70sQdi8eTP8/PwwePBg8Hg8HD58GDNmzIBcLsfMmTMBAOvWrcMHH3wAsViMTz/9FAAqvJsRFhaGKVOmoH379vj666+RkpKC9evX4+LFi7hx44bSe0cmkyEoKAgdO3bEd999h1OnTmH16tVo3Lgx3n///Qpf97CwMIjFYvzvf/+DWCzGmTNnsGTJEuTk5GDVqlWKuv/22284cOAANm/eDLFYjObNm6NTp054//33MWzYMMX7tEWLForXqWvXrnB2dsbHH38MExMT7N69G0OHDsW+ffswbNgwpXrMmDEDtra2WLJkSZWumicnJ8PY2BjGxsZKy3Nzc7Fw4UJF4l6RHTt2IDc3F++++y4YhsG3336Lt956C0+ePAGfz9e4XV5eHrp3746oqChMnToVbdq0QXp6Og4dOoTnz5/DxsYGhYWF6NWrF2JiYjBr1iw0atQIe/bsQXBwMLKysjB79myN8e/du4fu3bvDzMwMCxYsAJ/Px08//YRevXrh3Llz6Nixo1J5dedy27ZtmDx5MoKCgvDNN9+goKAAmzdvRrdu3XDjxg1FEnHixAkMHz4czZo1w9dff42MjAxMmTKlwqS1vEePHmH06NF47733MHnyZGzduhUjR47EsWPHEBgYCE9PT3Tt2hXbt29X6cO5fft2mJqaYsiQIRrjFxYWIiAgAPHx8fjwww/h5OSEbdu24cyZM5XW7eTJkxg7diwCAgLwzTffAACioqJw8eJFxWugzetZZuXKleBwOJg3bx6ys7Px7bffYvz48bh8+bKizJ49e1BQUID3338f1tbWuHLlCr7//ns8f/4ce/bsUaqfVCpFUFAQunXrhu+++07xfg4ODsbu3bsxceJEdOrUCefOncOAAQNUjk/Xz2x1Kvs8BLR7T/bo0QMffvghNmzYgEWLFim+K8v+1fY9SQghtYbVweeff84CYNPS0tSu9/PzY3v27Kl4HhsbywJgV61axd69e5cFwF64cIFlWZbduHEjKxaL2fz8fHby5MmsiYmJSrxZs2axrq6urFwuZ1mWZU+cOMECYG/cuKFUbuvWrSwA9tSpU2xaWhr77Nkz9o8//mCtra1ZIyMj9vnz5xqP6c8//2QBsF9++aXS8hEjRrAMw7AxMTGKZT179mT9/PwqPEevlvX19WXT0tLYtLQ0Njo6mp0/fz4LgB0wYIBS2VfPk1QqZZs0acK2bNlScdzqzvur5+zXX39lAbD79+9XrAfAzpw5s9J6AmA5HA577949peXTpk1jHR0d2fT0dKXlY8aMYc3NzdmCggKWZVk2PDycBcA6OzuzOTk5inK7d+9mAbDr169XOicA2B9//FEp5rZt21gOh6N4b5T58ccfWQDsxYsXWZZl2bVr11b4/tMlVtmxCwQCpdf41q1bLAD2+++/VyxbtWoVC4CNjY1V2V/ZeXhVUFAQ6+npqbSs/N9GmbLzFx4ezrIsy5aUlLB2dnasv78/W1hYqCj3119/sQDYJUuWKJZNnjyZBcAuX75cKWbr1q3Ztm3bquxLm7q/++67rLGxMVtUVKRYpu79l5aWxgJgP//8c5UYAQEBbPPmzZViyOVytkuXLmyTJk0Uy8r+brt168ZKpdJK66vOo0ePWJFIxE6cOFFl3bx589hGjRop6uHu7q7xb8/a2prNzMxULD948CALgD18+HCF+1+yZInK316Zsr/fdevWsQDY33//XbGupKSE7dy5MysWi5X+bsqf06FDh7ICgYB9/PixYlliYiJramrK9ujRQ7FM07nMzc1lLSws2OnTpyvVLTk5mTU3N1da3qpVK9bR0ZHNyspSLCv7zHV3d6/wPLBs6fkFwO7bt0+xLDs7m3V0dGRbt26tWPbTTz+xANioqCil82FjY8NOnjy5wn2Uncvdu3crluXn57NeXl5Kf0csW/r38Wq9Z8+ezZqZmVX4XtPm9Sz7m23atClbXFysWL9+/XoWAHvnzh3FMnV/Y19//TXLMAz79OlTpboCYD/++GOlstevX2cBsHPmzFFaHhwcrPJe0fYzWxNtPw+1fU/u2bNH5TVhWd3ek4QQUltqrOODn58fWrRooWg+sWPHDgwZMkTlqm8ZqVSKXbt2YfTo0Yq7ImVNmTQN1tC3b1/Y2trC1dUVY8aMgVgsxoEDB+Ds7KyxXn///Te4XC4+/PBDpeVz584Fy7I4evRoVQ4XQGkzI1tbW9ja2sLX1xerVq3C4MGDKxzNrOwu0q1bt1Tudmgyfvx4NGnSpMp9kXr27IlmzZopnrMsi3379mHQoEFgWRbp6emKR1BQELKzsxEZGakUY9KkSTA1NVU8HzFiBBwdHfH3338rlRMKhZgyZYrSsj179qBp06bw9fVV2ldZE8nw8HAAL/vAHDx4UGUkQF1jlenbty8aN26seN6iRQuYmZnhyZMnlZ43AEp3x7Kzs5Geno6ePXviyZMnyM7O1irGq65du4bU1FTMmDFDaVCBAQMGwNfXF0eOHFHZ5r333lN63r17d63q/2rdc3NzkZ6eju7du6OgoADR0dE61x0AMjMzcebMGYwaNUoRMz09HRkZGQgKCsKjR49UmgpOnz4dXC5X530VFBRg5MiRMDIywsqVK5XWPXz4EOvXr8eqVau06ocyevRoWFpaKp53794dACo9j/v27UPLli1V7ooBUHxu/f3333BwcMDYsWMV6/h8Pj788EPk5eXh3LlzamPLZDKcOHECQ4cOhaenp2K5o6Mjxo0bh3/++Qc5OTlK25Q/lydPnkRWVhbGjh2r9PfA5XLRsWNHxd9DUlISbt68icmTJ8Pc3FyxfWBgoNJnQ2WcnJyUzoWZmRkmTZqEGzduIDk5GQAwatQoiEQipc/x48ePIz09HRMmTKgw/t9//w1HR0eMGDFCsczY2BjvvPNOpXWzsLBAfn4+Tp48qbGMNq9nmSlTpkAgECieq3vPvPo3lp+fj/T0dHTp0gUsy+LGjRsq+yh/17esdcWMGTOUln/wwQdKz6vyma1OZZ+HVXlPlqfte5IQQmqT3hOkipp4jRs3Dnv27EFMTAwiIiIwbtw4jWVPnDiBtLQ0dOjQATExMYiJiUFsbCx69+6NnTt3qv2BvHHjRpw8eRLh4eG4f/8+njx5gqCgoArr+/TpUzg5OSn9uAdeNgV4+vRphdtXxMPDAydPnsTx48exadMmODs7Iy0trdLRtMaPHw8vLy+tE56ypOrmzZtaJ1WvatSokdLztLQ0ZGVlYcuWLYoEr+xRltyU70PVpEkTpecMw8DLy0tlUA1nZ2elHxVAabOce/fuqezL29tbaV+jR49G165d8fbbb8Pe3h5jxozB7t27ld4L2sYq4+bmpnI+LC0t8eLFiwrPWZmLFy+ib9++MDExgYWFBWxtbRVNQKuSIJW933x8fFTW+fr6qrwfRSKRormfrvW/d+8ehg0bBnNzc5iZmcHW1lbxA7UqdQeAmJgYsCyLzz77TOU1KOvLVP41KP/+04ZMJsOYMWNw//597N27F05OTkrrZ8+ejS5dumD48OFaxSv/PihLlio7j48fP4a/v3+FZZ4+fYomTZqoDMRR2WdMWloaCgoK1L4XmjZtCrlcrtLPr/y5fPToEYDSi0vlX48TJ04oXouyOpT/OwbUvxc18fLyUvkOKPvbK/sssLCwwKBBg5T6k27fvh3Ozs6KCxmaPH36VO0+tKnjjBkz4O3tjTfffBMuLi6YOnWqSvNubV7PMtq8Z+Lj4xEcHAwrKytFH8Gy0U/L/43xeDyV5oxPnz4Fh8NReV29vLyUnlflM1ubYyo7rrJjqsp7sjxt35OEEFKbdOqDVPbDvnwH0zIFBQUV/vgfO3YsPvnkE0yfPh3W1tZ44403NJYtu7o4atQotevPnTuH3r17Ky3r0KED2rVrV+Ex1CQTExP07dtX8bxr165o06YNFi1ahA0bNmjcrizhCQ4O1noEvvHjxyv6Iuk6ge2rVzkBKBKOCRMmYPLkyWq3Ketvoqvy+yrbX/PmzbFmzRq127i6uiq2PX/+PMLDw3HkyBEcO3YMu3btQp8+fXDixAlwuVytY5XRdOdCm8T08ePHCAgIgK+vL9asWQNXV1cIBAL8/fffWLt2rca7XPpUlTsvQGlH9J49e8LMzAzLly9H48aNIRKJEBkZiYULF1a57mXbzZs3T+PFifI/7tS9Jyozffp0/PXXX9i+fbvKj+ozZ87g2LFj2L9/v1KCLpVKUVhYiLi4OFhZWcHMzEyxrjrvg7pE09/ytm3b1PbD4vFqrBuqkkmTJmHPnj2IiIhA8+bNcejQIcyYMcOgozna2dnh5s2bOH78OI4ePYqjR49i69atmDRpktYDZryqsveMTCZDYGAgMjMzsXDhQvj6+sLExAQJCQkIDg5W+RsTCoVVPn59fWbXxN9BXX1PEkLIq3T6JHJ3dwcAPHjwQOWHZkFBAZ49e1Zh0uPm5oauXbvi7NmzeP/99zV+EJbNjzR69GilphRlPvzwQ2zfvl0lQaoKd3d3nDp1Crm5uUp3kcqaGJUdsz60aNECEyZMwE8//YR58+apvVpXZsKECfjyyy+xbNkyDB48uNLYVUmqNLG1tYWpqSlkMplSgleRsquCZViWRUxMjFZfyo0bN8atW7cQEBBQ6SATHA4HAQEBCAgIwJo1a7BixQp8+umnCA8PVzQP0TaWtjTFOXz4MIqLi3Ho0CGl11JdExFt6/Lq31j5H/4PHjzQ2/vx7NmzyMjIwP79+5XmYKpsxMcymo6nrNkNn8/X+r2jq/nz52Pr1q1Yt26dUrO1MvHx8QCgdpCThIQENGrUCGvXrtWq03plGjdujLt371ZYxt3dHbdv34ZcLlf6AVzZZ4ytrS2MjY3VzuUTHR0NDoej8jmsrn5AaXJQ0etRVofyf8cAdJpLqOwO4qvvj4cPHwKAUsf7fv36wdbWFtu3b0fHjh1RUFCAiRMnVhrf3d0dd+/eVdmHtnUUCAQYNGgQBg0aBLlcjhkzZuCnn37CZ599Bi8vL61eT23duXMHDx8+xK+//opJkyYpllfUxK88d3d3yOVyxMbGKt3dKz9aXlU+s6tCl/ekps8Ibd+ThBBSm3S6XBUQEACBQIDNmzerXP3asmULpFIp3nzzzQpjfPnll/j8889V2lC/6sCBA8jPz8fMmTMxYsQIlcfAgQOxb98+tUO76qp///6QyWT44YcflJavXbsWDMNUejy6WrBgASQSicY7HGVebTZXfnhkTSZMmAAvLy8sW7asWnXkcrkYPnw49u3bp/bHQlpamsqy3377TWmY5b179yIpKUmr8zdq1CgkJCTg559/VllXWFioGI0rMzNTZX2rVq0AQPFe0DaWLkxMTABAZaLYsqutr15dzc7OVjtpqYmJiVYTzbZr1w52dnb48ccfld7fR48eRVRUlNrRq6pCXd1LSkqwadMmrbYv6ztY/pjs7OzQq1cv/PTTT0hKSlLZTt17RxerVq3Cd999h0WLFmkc/a1Pnz44cOCAysPW1hbt2rXDgQMHMGjQoGrVo8zw4cNx69YttcNhl53b/v37Izk5Gbt27VKsk0ql+P777yEWizVOOM3lcvHGG2/g4MGDSnfCUlJSsGPHDnTr1k3pLpg6QUFBMDMzw4oVKyCRSFTWl70ejo6OaNWqFX799Velpl8nT57E/fv3K9zHqxITE5XORU5ODn777Te0atVK6W4Bj8fD2LFjsXv3boSFhaF58+ZaXUzp378/EhMTsXfvXsWygoICbNmypdJtMzIylJ5zOBzFPsv+1rR5PbWl7m+MZVmVYcUrUnYXtvzf5ffff6+yL10/s6tCl/ekps9Nbd+ThBBSm3S6g2RnZ4clS5Zg8eLF6NGjBwYPHgxjY2NERERg586deOONNyr94dGzZ0+NPwjKbN++HdbW1ujSpYva9YMHD8bPP/+MI0eOaDUUdkUGDRqE3r1749NPP0VcXBxatmyJEydO4ODBg5gzZ45Sh1V9aNasGfr3749ffvkFn332WYVDkJc1m7t586ZWsblcLj799FOVQRCqYuXKlQgPD0fHjh0xffp0NGvWDJmZmYiMjMSpU6dUkhUrKyt069YNU6ZMQUpKCtatWwcvLy9Mnz690n1NnDgRu3fvxnvvvYfw8HB07doVMpkM0dHR2L17N44fP4527dph+fLlOH/+PAYMGAB3d3ekpqZi06ZNcHFxQbdu3XSKpYu2bdsCAD799FOMGTMGfD4fgwYNwhtvvKG4Iv3uu+8iLy8PP//8M+zs7FSSg7Zt22Lz5s348ssv4eXlBTs7O7X9Lfh8Pr755htMmTIFPXv2xNixYxXDfHt4eKgMjVxVXbp0gaWlJSZPnowPP/wQDMNg27ZtWv8INDIyQrNmzbBr1y54e3vDysoK/v7+8Pf3x8aNG9GtWzc0b94c06dPh6enJ1JSUnDp0iU8f/5cZcJobR04cAALFixAkyZN0LRpU/z+++9K6wMDA2Fvbw83Nze1d2fnzJkDe3t7nZugVmT+/PnYu3cvRo4cialTp6Jt27bIzMzEoUOH8OOPP6Jly5Z455138NNPPyE4OBjXr1+Hh4cH9u7di4sXL2LdunUq/R9f9eWXXyrm/poxYwZ4PB5++uknFBcX49tvv620fmZmZti8eTMmTpyINm3aYMyYMbC1tUV8fDyOHDmCrl27Ki4Off311xgwYAC6deuGqVOnIjMzE99//z38/PyQl5en1fnw9vbGtGnTcPXqVdjb2yM0NBQpKSlqLxpMmjQJGzZsQHh4uGLY7cpMnz4dP/zwAyZNmoTr16/D0dER27Zt0zjYz6vefvttZGZmok+fPnBxccHTp0/x/fffo1WrVor+YNq8ntry9fVF48aNMW/ePCQkJMDMzAz79u3Tun8jUPq5MXz4cKxbtw4ZGRmKYb7L7sq9epdG18/sqtL2PdmqVStwuVx88803yM7OhlAoVAy0pO17khBCak1Vhr77/fff2U6dOrEmJiasUChkfX192WXLlikN68uyysNXV+TVIatTUlJYHo+ndtjeMgUFBayxsTE7bNgwlmVfDnF79erVqhwOm5uby3700Uesk5MTy+fz2SZNmrCrVq1SDOtaRtdhvjWVPXv2rNIQrRWdp7JjQwXDfL9KIpGwjRs31mmYb03lUlJS2JkzZ7Kurq4sn89nHRwc2ICAAHbLli2KMmVD3u7cuZP95JNPWDs7O9bIyIgdMGCA0jC2lZ2TkpIS9ptvvmH9/PxYoVDIWlpasm3btmWXLVvGZmdnsyzLsqdPn2aHDBnCOjk5sQKBgHVycmLHjh3LPnz4UOdYFR27u7u7ynDDX3zxBevs7MxyOBylIb8PHTrEtmjRghWJRKyHhwf7zTffsKGhoSrDgicnJ7MDBgxgTU1NWQCKIb/LD/NdZteuXWzr1q1ZoVDIWllZsePHj1cZrl7Te6BsWO7KXLx4ke3UqRNrZGTEOjk5sQsWLGCPHz+uUh9Nw/tHRESwbdu2ZQUCgcqQw48fP2YnTZrEOjg4sHw+n3V2dmYHDhzI7t27V1FG17/bsnpoepQ/h+VVNMy3ur+98sekSUZGBjtr1izW2dmZFQgErIuLCzt58mSl4ZZTUlLYKVOmsDY2NqxAIGCbN2/Obt26Vat9RkZGskFBQaxYLGaNjY3Z3r17sxEREUplKjuX4eHhbFBQEGtubs6KRCK2cePGbHBwMHvt2jWlcvv27WObNm3KCoVCtlmzZuz+/ftVhsvWpOz8Hj9+nG3RooXiu2HPnj0at/Hz82M5HE6FUzGU9/TpU3bw4MGssbExa2Njw86ePZs9duxYpcN87927l33jjTdYOzs7ViAQsG5ubuy7777LJiUlKcWv7PUs+5stf1xl76VXX9f79++zffv2ZcViMWtjY8NOnz5dMXT2q+U0/S2zbOkw5jNnzmStrKxYsVjMDh06lH3w4AELgF25cqVSWW0+szXR5fNQm/cky7Lszz//zHp6erJcLlfl9dH2PUkIIbWBYdl61guZ1Clnz55F7969sWfPHrX9xQghRJPWrVvDysoKp0+fru2q1Cs3b95E69at8fvvv2P8+PG1XR1CCGlwamweJEIIIaTMtWvXcPPmTaUBDIgqdaPGrlu3DhwOR2mAFUIIIfpD42kSQgipMXfv3sX169exevVqODo6YvTo0bVdpTrt22+/xfXr19G7d2/weDzFEOXvvPNOpaMYEkIIqRq6g0QIIaTG7N27F1OmTIFEIsHOnTsrnTj7ddelSxdkZmbiiy++wNy5c/Hw4UMsXboUGzdurO2qEUJIg0V9kAghhBBCCCHkP3QHiRBCCCGEEEL+QwkSIYQQQgghhPynVgdpkMvlSExMhKmpqdKEd4QQQgipu1iWRW5uLpycnMDh0LVWQkjDUqsJUmJiIo3CQwghhNRTz549g4uLS21XgxBC9KpWEyRTU1MApR+wZmZmtVkVQgghhGgpJycHrq6uiu9xQghpSGo1QSprVmdmZkYJEiGEEFLPUPN4QkhDRA2HCSGEEEIIIeQ/tXoHiRBCCCG6Y+UspGkFkKQUgC2Rg+Ex4Nkag29vDIZH1z4JIaQ6KEHSs+KCfCQ9jEbykxjkpqdBLpdDaGICO/dGcPDyhpUTdWYlhBBSNcWx2cj7NwlF9zPASuSqBbgMRE0sYdLJESJvSzAcagJHCCG6ogRJT1LjniDy70N4EHEeUkmJxnL2nk3Q6o3+aNazDzgcbg3WkBBCSH0lzSrGi/2PUPzwRcUFZSyKojNRFJ0JvosYViO9wbc3qZlKEkJIA8GwLMvW1s5zcnJgbm6O7OzsejtIg1QiQcSe7bh2eD9YuZqreRrYezZBvxlzYOPqbsDaEUIIqe8KozORuTMabLFMaXkJA5x24OGqFRfRZlwkGnEgZwCxlEWTXDmaZcvQL1WKVoGNYdLBQa91agjf34QQogklSNVQmJeL/SuWIPnxoyptz+XzMWD2AjRp31nPNSOEENIQFEZnImPbfUD28qtawgBbPQXY7cZHlqDi/kYMy6JDhgyLne3Qvoub3upV37+/CSGkItSTs4pKigqx76vPqpwcAYBMIsFfa79B7I1reqwZIYSQhkCaWYTMHdFKydEDUw7GdzbGFi9hpckRALAMg8s2PAwrzMA3N59CXnvXRAkhpN6gBKmKzm0LQcqTmGrHkcuk+HvjGuRnVdKunBBCyGuDZVm82PsQbMnLZnU3LLiY3sEYT0x1778q5TBY++IFZt6jJIkQQipDCVIVxN+9jdunjuktXlFuDk6HbtZbPEIIIfVb8cMXKH6SrXgeZ8LBnLZGKOBVb1S6A2lZ+OxRQnWrRwghDRolSFVw+cAfeo/56HIEMhKe6T0uIYSQ+ifv3yTF/2UAPvcXIb+ayVGZkIR0nM/M1UssQghpiChB0lFm4nPE371tkNi3Tv5tkLiEEELqD3mJDEUPMhXP97nycc9Cv9NCzH3wDFI5NbUjhBB1KEHSUeyN6waMTYM1EELI606SmAf8N2sEC+APd4He9/GsqATHM7IrL0gIIa8hSpB0lBJb/YEZNMlKSUZxQb7B4hNCCKn7JMkFiv9HWnIRb2KYr+rtiRkGiUsIIfUdJUg6ykpKNFxwlsULQ8YnhBBS5706ct1NS/02rXvV1ex81OJUiIQQUmdRgqQjqVRi0PgyqdSg8QkhhNRx3JeDMUSbGe5rOlcmR2xhicHiE0JIfUUJko74QpGB4wsNGp8QQkjdxrM2Uvw/XWjYr+mUEsNe9COEkPqIEiQd2bi4GSw2w+HCysnFYPEJIYTUfQJncY3ti1rYEUKIKkqQdGTf2MtgsRmOFRJjaG4KQgh5nXFNBeA7mgAALEoMm8FYCQzXx4kQQuorSpB01LhtR3C4PIPE5vC8cHTzHSTFZBkkPiGEkPrBpJMjAMAnV1ZJyaoz4nDQxNiwzcYJIaQ+ogRJRyYWlvDq0NkAkTngCptDKpHj5Nb7KCmiwRoIIeR1ZdzaDlxzIZpnGS5BamlqBC7DVF6QEEJeM5QgVUGXEWPB5fP1GpMrbAWGU9ruPDejCJcPPtFrfEIIIfUHR8CF5fAm6Jghg12R3CD7GONoZZC4hBBS31GCVAXWLm7oPGKc3uIxHEvwjLoqLbv/TyKKC2h0IUIIeV2JvC1h0cMFbz3T/3eBFZ+LoXaWeo9LCCENASVIVdRh8HB4d+pW/UCMCHzxIDCM8h0pqUSO6EvJ1Y9PCCGk3rJ4sxHec7SGW75+7yJ92cQFIi79BCCEEHXo07GKGA4HAz6cD0unNtUIIobAdCQ4XBu1q59FZ1Y9NiGEkAbBYZAXVjvYgSfXz4h2A2zN8ZY93T0ihBBNKEGqBg6XC5F5f/BNBgCMUeUbvIIr8IPQbBI4XFuNZdKe0pDfhBBCgO7tXLDBywW8auZInS1M8ENTd/1UihBCGijDjFf9GsnJKAJX4AMO3wOy4nuQFd8GK9d054cPrsAHXGErcHh2lcYuyCmBVCIDj0/zVBBCyOvuLXdbmIuFmBMVjzSJ7iOdjnKwxDferjCipnWEEFIhSpCqiZWVXs5jGCF4ojbgidqAledDLksBK88FWDkYRgiGZweGYwWG0e2LSS5jAf0OmEcIIaSeCrA2w7mOvvg8JgEHUl5AqsUdpUZGAizzcsYbNuaGryAhhDQAlCBVE1/ERXGB8pU8hmMCLsez2rE5HAY8Pl3pI4QQ8pIVn4fvm7rjU08n7EjKwMUXebiTV4AcaelADhwAjY2FaGVmjOH2luhpaQqG5jsihBCtUYJUTdbOYiQ+yjJIbEtHE3CoKQQhhBA1HIR8/M/DAf/zAFiWRbZUBikLiLkcGqGOEEKqgT5Bq8nO3bRexiaEENJwMAwDCz4PNgKeIjkqkcuRL5NBxupn9DtCCHld0B2kamrS3h43Tz0zWGxCCCFEGwUyOQ6kvMCZzBzcyi3A86LSCWY5ALyMRWhlZoSBthboa20GDjW5I4QQjShBqiY7dzPYNzJDSmyOXuNa2BvDxZfmqSCEEFKxErkc65+m4OfnaYp+SK+SA3hYUISHBUXYnfwCLiI+Pm7kiBEOVjVfWUIIqQeoiZ0edHmrMaDni3FdhntRp1pCCCEVis4vRNC1h1gdl6I2OVLneZEEs6LiMfnOE7yownDhhBDS0FGCpAdOTSzRopeL3uL5dHRAoxY2eotHCCGk4bmVW4ChkTGIyi+q0vbH03Mw7EYMMkooSSKEkFdRgqQnXYZ7wc2v+s0VHBubo+d4Hz3UiBBCSEOVVFyCsbceI0sqq1ac6PwiTLzzBFI5DeRACCFlKEHSEy6Pg/7vtajWwAruza0x8IOW4Au4eqwZIYSQhmZe9HNkSqqXHJWJzCnAxvhUvcQihJCGgBIkPeLyOXhjmh/eeNsPRqZ8rbcTGvPQe6IvBs5sCYGIxs0ghBCi2dG0LJzO1O/AQKvjkpFYVKLXmIQQUl/Rr3EDaNLOHo1a2ODh1RT8czURd/OLUMArHcfBtJCFY6YUYilg4ypG0y6O8O7oQIkRIYQQrfzyPF3vMUtYFtsSM7DQ01HvsQkhpL6hX+UG8LSwGL8mZGAPMpHWkgdArFKmiZEQE5yt4epgBQGfXgZCCCGViy8sxsWsPIPE3pmUSQkSIYSAmtjpVbFcji8fJ6LL5ShsepaKtApGBnpUWIzPYxLR4d8o7ErKrMFaEkIIqa+u5xQYLHZyiQTPqZkdIYRQgqQvCUUlCLr2ED/Ep0Kmw2BA2VIZZkfHY9rdWBTJtJvDghBCyOvpTm6hgeMbLgEjhJD6ghIkPUgqLsHQGzGIruJcFABwJC0bU+7GokROSRIhhBD10iUSg8bP0NPIeIQQUp9RglRNcpbFO3ef4pkemiWEZ+Zi5ZNkPdSKEEIIIYQQUhWUIFXTz8/TcDUnX2/xfnyWiuvZ+otHCCGk4bATaD+FRFXYCmjQIEIIoQSpGgpkcqyJS9FrTDmAlbFJeo1JCCGkYWhuamTQ+C0MHJ8QQuoDSpCq4c+UF8iW6r+99oUXeXhUjf5MhBBCGqZ2ZiZgDBTbWciHo1BgoOiEEFJ/UIJUDYfTsgwW+4gBYxNCCKmfnEUC9LIyNUjs8U7WBolLCCH1DTU21sKL5ETERl5FypMYZCYlQFZSAp5AiGu9RgM8w1xtu23goVwJIYTUT2+72CI8M1evMY04DCY4UoJECCEAJUgVeh59D//u+wNP79wEWOXJjfKNTJBroOQIAKLyKUEihBCiKsDaDANszXEkLVtvMT/2dISd0LADQBBCSH1BCZIakpJiXNgehhvH/1JJjBRlDJgcAaUDQBBCCCHqrPR2wbXsfKSUSKsdq4uFGNNdbPVQK0IIaRioD1I5xQUF2PvFYtw4dlhjcgQAHANP6MrnGKobLiGEkPrOVsDHrlaNYcOv3nXOVqbGCGveCByGvnMIIaQMJUivkMtk+HPVciQ+jKq0rLggB3xJ9SeH1cTTSGiw2IQQQuo/XxMj/NW2CdqaGVdp+xH2ltjbqjHMeFw914wQQuo3SpBeceXgXjy/f1ershyWhW2G4eYramFatS88Qgghrw8PIyEOtWmCpY2dYKflJK8+JiL82rwRfmjmDjElR4QQooL6IP3nRVIC/t23U6dtPOMfIdHB3SD16W2gYVwJIYQ0LFyGwXtudpjmYou/07NwJiMXt3MLEFtYjBI5C2MuB74mIrQwNcYgOwt0thDXdpUJIaROowTpPzeO/QWZVLfOrs2jriGibS/Iufo9jU2MhehqSQkSIYSQl3IyCpGTVgi5nAVfyIO1kwkERi+/f/gcBkPsLDHEzrIWa0kIIfUfJUgApCUluH/+jM7biQvz4P/gBm43a6/X+nzobq/XeIQQQuqnxEdZuHs+Ac+iMlGUJ1FeyQAWdsbwamsHv+5OEFuKaqeShBDSwFCCBCAl9jGKC/KrtG2vS8cQ69oEuaYWeqlLX2szjHSw0kssQggh9dOL5HyEb4tG0uMK5jpigayUAlz7Ow7Xjz1Fi94u6DTEEzwB9SsihJDqoEEaAKQ8ianytkJJMQae3gOeHka0cxMJsMbHtdpxCCGE1F/3LyZi11dXK06OymHlLG6dfoZdX13Fi+SqXfAjhBBSihIkALkZadXa3iX5KYYd2w6+pLjKMTyMBNjbqjHNZE4IIa+x2+HPEb4tGjJJ1ebay0opwIHVkZQkEUJINVCChNL5j6rLI+ExJu3dBKfkpzpvO9rBCsfbesON5j4ihJDX1vPoTFzY/bDacQpzJfhr421Iiqv/3UYIIa8j6oMEQGSinyFPrbIzMO7PX3C/SUvc8O+IJHvNzeW4DBBobYbpLrY0Yh0hhLzmSoqkOLMtGmBLn7MsC1b+AqwsFSxbDIABwzEFh2sPhlP5PHk5aYW49Odj9BjtbdiKE0JIA0QJEgBb90Z6i8WAhd+jm/B7dBMZFrZIsnOBxaBRkIjNwDCAo4CPFqbGaG9uAntqTkcIIQSlTetyM4ogl6VDVnwLspJogFXfbJvhWIMrbA6u0A8Mo7nlwZ2zz9GyjwvMbWnicUII0QUlSCidJNYQrLPSYJf3AjNbfgq+kIZfJYQQokouZ3Hn3BNI8k9CVnKn0vKsPAPSwrOQFl0G37gPuAIfDQWBu+cT0XW4l55rTAghDdtr3wfpzpkTOL99q8Hie3XoQskRIYQQjR5cuocXT3/RKjlSwhZCkn8EJflHwbLqB3V4dCVZDzUkhJDXy2udIKU9jcWpXzYZdB+tggYYND4hhJD6KzMxASe3fAVWnlPlGPKSKEjyj6hNkvKzS5CfVfURVgkh5HX02iZIcpkMxzatg1wmNdg+vDt2hYuvn8HiE0IIqb+kEgkOrf4KkqLcaseSSx5BWhgBuTQBMkkc5JJnYOWlQ32nP8+rdnxCCHmdvHZ9kOQyGTKex+NO+Emkxj022H6MzMwR8PYMg8UnhBBSv13auwMZz+P1Fk9WfAWy4ivKCxkTXD3YFkbiEbDz8NTbvgghpCF7bRKk5/fv4uaJI3h8/QqkJYZtbsAXGWHYwiUwNjM36H4IIYTUTwU52bh+5E/D74jNx9Pb57Ht9nl4tmmPvtNnwtTKxvD7JYSQeqzBJ0g56Wk4ueV7xN2KrLF9vvHOLDh6aRhViBBCyGvvbvhJyCSSGt3nk8ir+HXeTPSb8T94tetYo/smhJD6pEH3QYq9cQ2/zptZo8kRAEgMfIeKEEJI/fbo8sVa2W9xfj4Or1mBh7W0f0IIqQ8abIL05MZV/LnqS5QUFtT4vjOeP6vxfRJCCKkfZFIp0uLjam3/cpkMf3//HdJrsQ6EEFKXNcgEKSctFUfWf6vTCHW5RlI8tS9AtFsuot1y8dS+ALlGVRvhTlpSUqXtCCGENHxZyYlqm9fli0yQLbZAvsjE4HWQSSQ4tnkd5DKZwfdFCCH1TYPsg3T8pw0oKSystFy+SIoHbrl45JKPQpH6LwmjIi6aPDeBT7wpTIq0O108foM8rYQQQvRAUlQEACjmC3HPuxViPJoixdYJRSJjRRmjwnzYpSfBKy4K/g9vQCDR/4W3lCcxiPrnLPx6Bug9NiGE1GcN7pf809s3EX/nZoVl5GBxt3EObnplQc6tOF6hSIbbXjm42ygHrWIs4P/YDBwwFW5j5eyqY60JIYS8LmRcLv5p1wfXWnSFRCBUW6bQyARPXb3w1NUL5zu+gfa3L6JT5Flw5aqTwVbHzeN/UYJECCHlNLgmdjdPHKlwfRFfhqOdUxDpU3ly9Co5F4j0ycLRziko4lfcJMG+kZf2gQkhhLw2HuUXYXxqCS6166MxOSpPIhAiol0fbHvrfWSa63eI7uTHj/AiOVGvMQkhpL5rUAmStKQETyKvalxfzJPheMcUpFlWfZS5NMtiHO+YgmKe+iTJ1MYWth6NqhyfEEJIwxSVV4ghNx4huqBq30FpNo7YOfRtpFva6bVeKY8f6TUeIYTUdw0qQUqLj61wYIaIFpl4YVb9eSdemEkQ0TxT7boWAf3A4ehwa4oQQkiDlymRYuytJ8iUVG9QhAIjMfYMmIwigUhPNQPSnsbqLRYhhDQEDSpBSn/2VOO6WMd8PHXQ35DfTx0LEOuYr7TM2NwCLd/or7d9EEIIaRg+ffgcySX6mRg2T2yO090G6iUWABQX1Px0GIQQUpc1qARJUqS+2QILFpHeWXrfX6R3Fliwiud9p82AkdhU7/shhBBSf/2blYcDqVl6jXnfuxWeO7jpJRaHS60eCCHkVQ0qQeLy1H/IJ9gUIdekanMaVSTXRIpEmyLF85M//4BTIZsrvJNFCCHk9RLyPN0gcW/6ddRLHHM7e73EIYSQhqJBJUgWDk5ql+uzaV15ca/ELszNwa0TR/DrvJnYt2oGkhPOQyajpguEEPK6ypXKcCw92yCxH3r6oYQnqHYcGnmVEEKUNah5kDR9yGeYV33UuspkmKufvC/uWjwSor5C4zfT4OkfBFfXYIjFPgarByGEkLrndm4BJCxbecEqkHF5SLVxhEty1VstCIyMYd+YEiRCCHlVg7qDJBKL4eilmoRkmeqnY6w6WWLNs5tL8vl4eMgeMbcP4crVQXgUsxIymeGSNUIIIXXL3bxCg8ZPsVXfckJbzXr0Bl+ovxHxGopLly6By+ViwIABateXlJTg22+/RcuWLWFsbAwbGxt07doVW7duhURS+pujV69emDNnjsq2YWFhsLCwAAB4eHiAYRiNj+DgYADQuP6PP/7QeAweHh5Yt26dyvKlS5eiVatWSssyMzMxZ84cuLu7QyAQwMnJCVOnTkV8fLxSubS0NLz//vtwc3ODUCiEg4MDgoKCcPHiRaX9ltXPxMQEbdq0wZ49e9TuX9vjB4CgoCBwuVxcvao6nUtwcDCGDh2q8VwQoqsGdQcJAFq+0R9JMQ8Uz+UMC7kB00A5t3QfHJZRv76Ei9jjLvAd+QTx8T8jM/MiWrXaCqFAv5P9EUIIqXteVHNY78oUCo2rvC2Xz0ebNwfrsTb6J5OzuBKbidTcItiZitChkRW4HPXft/oUEhKCDz74ACEhIUhMTIST08tEtKSkBEFBQbh16xa++OILdO3aFWZmZvj333/x3XffoXXr1ioJiCZXr16FTFb6HomIiMDw4cPx4MEDmJmZAQCMjIwUZbdu3Yp+/fopbV+WaFVHZmYmOnXqBIFAgB9//BF+fn6Ii4vD4sWL0b59e1y6dAmenp4AgOHDh6OkpAS//vorPD09kZKSgtOnTyMjI0Mp5vLlyzF9+nTk5ORg9erVGD16NJydndGlS5cqHX98fDwiIiIwa9YshIaGon379tU+bkIq0uASJJ/O3XFp305kpyQDADgsA4YFNOQv1caw0JgclZHk85FwyR5uvZKQl3cfN25MQNs2u8DnmxumUoQQQuoEQ/+UZ1D15nudh4+FpaOzHmujX8fuJmHZ4ftIyn45GJKjuQifD2qGfv6OBttvXl4edu3ahWvXriE5ORlhYWFYtGiRYv26detw/vx5XLt2Da1bt1Ys9/T0xMiRI1FSorllSXm2traK/1tZWQEA7Ozs1CY+FhYWcHBwqMIRVezTTz9FYmIiYmJiFPHd3Nxw/PhxNGnSBDNnzsTRo0eRlZWFCxcu4OzZs+jZsycAwN3dHR06dFCJaWpqCgcHBzg4OGDjxo34/fffcfjwYZUESdvj37p1KwYOHIj3338fnTp1wpo1a5SSR0L0rUE1sQMAnkCAoPdmA8zLryXTfMPlgdrGznxggaIXpZ1p8/MfIfrBZwarEyGEkLrBXsg3aHxxfk6VtnP1a4H2Q4bruTb6c+xuEt7/PVIpOQKA5OwivP97JI7dTTLYvnfv3g1fX1/4+PhgwoQJCA0NBftKP7Lt27ejb9++SslRGT6fDxMTE4PVTd/kcjn++OMPjB8/XiX5MjIywowZM3D8+HFkZmZCLBZDLBbjzz//RHGx9t0FeDwe+Hy+Tonjq1iWxdatWzFhwgT4+vrCy8sLe/furVIsQrTV4BIkAHBt1hydh49RPLfOqf4oP5rYZGsfO/2+peL/qalHkJp63BBVIoQQUke0MDXsVW77tESdt3Hyboah8xeDw6mb8x/J5CyWHb6v9t5Y2bJlh+9DJjfM4BchISGYMGECAKBfv37Izs7GuXPnFOsfPXoEX19fg+y7ImPHjlUkKWWP8n2Eylu4cKHKNitWrFCsT0tLQ1ZWFpo2bap2+6ZNm4JlWcTExIDH4yEsLAy//vorLCws0LVrVyxatAi3b9/WuP+SkhJ8/fXXyM7ORp8+fap03KdOnUJBQQGCgoIAABMmTEBISEiVYhGirQaZIAFAl5Hj0WHoSACAS6rhvqCc07SPnfXETOl5bNz3+q4OIYSQOsRPbARTrmG+aoXFhbDNTNFhCwZcYXs0iZOCZ5jcQi+uxGaq3Dl6FQsgKbsIV2Iz9b7vBw8e4MqVKxg7diyA0rsfo0ePVvpBzhpoVMLKrF27Fjdv3lR6vNo3Sp358+erbPPee++plNP2mIYPH47ExEQcOnQI/fr1w9mzZ9GmTRuEhYUplStLzIyNjfHNN99g5cqVGge8qExoaChGjx4NHq+0xc7YsWNx8eJFPH78uErxCNFGg02QAKD72MkYPO9TNCtwgrBE/4cqLObAI1n7W+nSAh5KXmmSl5cXhazs63qvFyGEkLpByOFghIOVQWL7PbwBrlybQSAYcPheEJiOBd+4OzKSivF89pxa+6FfmdRczclRVcrpIiQkBFKpFE5OTuDxeODxeNi8eTP27duH7OzS+ay8vb0RHR1daSwzMzPFNq/KysqCubnufZAdHBzg5eWl9ChLGjSxsbFR2aasrw9Q2gfIwsICUVFRarePiooCwzDw8no5FLxIJEJgYCA+++wzREREIDg4GJ9//rnSdmWJ2fPnz/HixQssXLhQ5+MFSgeQOHDgADZt2qR4PZydnSGVShEaGlqlmIRoo0EnSADQpH1nTFv9E/qb9NB7bP9YM3DlunXBLcoQKj1PTw/XZ5UIIYTUMVOdbcDT82gNHJkMre9eLn3CmIIr7AiusA04PHcwPGdweG7gCluCZ/wGhOZvQyAeDA6vtI9JsdAc+Rcu4MWOHfqtlJ7YmWo37Li25bQllUrx22+/YfXq1Up3XG7dugUnJyfs3LkTADBu3DicOnUKN27cUIkhkUiQn58PAPDx8UFkZKRKmcjISHh7e+u17lXF4XAwatQo7NixA8nJyUrrCgsLsWnTJgQFBSklVeU1a9ZMccxlyhIzBwcHMEzV3/zbt2+Hi4sLbt26pfSarF69GmFhYYoR8AjRtwY3ip06RmJTfD5mHR4eGYd7mff1EtM6SwC/ck3mtCGXKuekubl39VIfQgghdVMTExFmudlj3VNdmsNVrOONc7DO44FrHAiuwBcMo8tgEKU/WFNXr4FZUBB4NnVr2okOjazgaC5CcnaR2n5IDAAH89Ihv/Xpr7/+wosXLzBt2jSVOzzDhw9HSEgI3nvvPcyZMwdHjhxBQEAAvvjiC3Tr1g2mpqa4du0avvnmG4SEhKBVq1Z4//338cMPP+DDDz/E22+/DaFQiCNHjmDnzp04fPiwzvXLyspSSWJMTU2rPSjEihUrcPr0aQQGBuLbb7+Fv78/YmNjsXjxYkgkEmzcuBEAkJGRgZEjR2Lq1Klo0aKF4pi//fZbDBkypFp10CQkJAQjRoyAv7+/0nJXV1d88sknOHbsmKLpXnZ2Nm7evKlUztraGq6urgapG2nYGvwdpDJcDhff9PwWVqLqf6CKijnoedMGnCoM4MpwlD/uC/KpDS0hhDR0//OwR0s9DdjglJ6HXjHeEJqNB0/YXMfkCOBLSq/2swUFyHplAs+6gsth8PmgZgBUh0kve/75oGZ6nw8pJCQEffv2Vdv8bfjw4bh27Rpu374NoVCIkydPYsGCBfjpp5/QqVMntG/fHhs2bMCHH36o+DHv6emJ8+fPIzo6Gn379kXHjh2xe/du7NmzR2U+I21MmTIFjo6OSo/vv69+X2Zra2v8+++/6N27N9599100btwYo0aNQuPGjXH16lXFHEhisRgdO3bE2rVr0aNHD/j7++Ozzz7D9OnT8cMPP1S7HuVdv34dt27dwvDhqqMtmpubIyAgQKlv2NmzZ9G6dWulx7Jly/ReL/J6YNhabISck5MDc3NzZGdnKyYFM7SHLx7i3ZPvIr0wXWWdnBFBxneFnGMCgAVXlgmuJAEM5IoyDGsC56w34J5UAI9nMeDLpDrt32fkYxhZvRzqks+3Ro/uV6p8PIQQQuqH9BIpRt2Mwf38qvedsX8hxYSzuTAuqfpXd8vbG2H9X2sKnpMjmpw5o3OMmvj+rq15kAgh5LVoYvcqb0tv7B20F1/++yVOxZ+CnCNGkbgXioy7QsZ3AphyN9XkJeCXPIRRbjhYsMizmoxUd3PcaAmIigrgHx2JjjfPw7iooNJ9c3hyiCyU5wHgcmmiM0IIeR3YCHg40NoLnzxKwP6UFzpv3zyuGP0iCyCSVOO6JiuHae7LoaGliUmQJCSA71z3Jozt5++IwGYOuBKbidTcItiZljar0/edI0IIKe+1S5AAwNrIGt/1WoP5d67gj3Qu5EwFp4EjgETkD4nIX2VVkcgY11p1w32fVuh74TB8ntyrcL9i53yV/MvExEt9YUIIIQ2OOZ+HTc3cMdjWAqvjknEnr7DSbRwypeh5rxDeiZJq798m4y4EkjylZYX37tXJBAkobW7XubF1bVeDEPKaeS0TpLQSCSbfiUVkjlC1gXMVFBiJceiNseh8PRzdrp7WWM6mmeoVQ1NT1cSLEEJIw9bP1hz9bM1xPTsfx5IzcOn0OTy1d0IJnw+BRAKXtHQYy9zgk1AC50z9jdTlnHBOZZk0NU1v8QkhpCF47RKkpNxiDL3xCE917DukjUtte4MvKUHHmxdU1hlZF8HUNV9luZ3tG3qvByGEkPqhrbkJmj5+gLc2rFBZF+09FolO3fS2L5u0m7B+oWb+HrlcdRkhhLzGXptR7HLSC3FuZzSGHbtjkOSozD/t+yLZRnlma4bDwq13IspPBWBm1gqmpn4GqwshhJC6T/LsmdrlXo/3Q6RmQKGq4JfkwvfhH2rXcS0t9LIPQghpKBp8gsSyLG6HP8POL64gNDEDcTaGvWkm53JxtPdbYF9pu+fUOQVG1sUqZT0bzTFoXQghhNR9rFT9RTuerBitbm+EoDi7WvF5kgK0vL0RAkmu2vWipk2rFZ8QQhqaBp0gyWRynPjlHi7seoRCqQzn/GtmxLh0awc8cWsCAHDqmAJbf9W+R06Oo2Bt3b1G6kMIIaTu4piINa4zLkxFmxtrYJr7tEqxjfOT0ebmWpjlqb9LxTE1heC/eW4IIYSUatB9kE5tvY+Y66kAgDvuQhQJai4fvN2iHQL9T8FMTb8jM7OWaNJkcY3VhRBCSN0l9PaucL1xUTraRn6HeNdAPHULhIxX+cU+jqwYLgnn0CjuCLhyzc3KzQcNAsNp0NdKCSFEZw02Qbp3IQEx11JfPncT1Oj+nzl7QgzVuZEsLDqgZYst4PFMarQ+hBBC6iZBIw9wxGLI8/I0luGwcnjEH4dLwlmk2LVHmm1L5IpdIRGYKsrwJPkwzXsGm4y7cEj+F3xpJUOIMwwsx43V12EQQkiD0SATpPysYkTsi1E8ZwEkWXJrtA7FjAhJrBOckQAA4HAE8Gw0B25ub4NharYuhBBC6i6GYWD2Zj9k7dlbaVmerBjOSf/AOekfAEAJXww5hw+OXKqxj5EmlhMmQOhFc/ERQkh5DfK++p2zz1FS9HLeiGxjDoprsHldmTTYg8+3grv7e+jU8RTc3d+l5IgQQogKy3HjqrSdQJIHUfELnZMjgbs77P73UZX2+Tq4dOkSuFwuBgwYoHZ9SUkJVq1ahTZt2sDExATm5uZo2bIlFi9ejMTERJ3ixcXFgWEY3Lx5U+m5nZ0dcnOVX9dWrVph6dKliuexsbEYN24cnJycIBKJ4OLigiFDhiA6OhphYWFgGKbCR1xcXIXnISgoCFwuF1evXlVZFxwcrIjD5/Nhb2+PwMBAhIaGQv7f0PHXr18HwzD4999/1cYPCAjAW2+9pYg3dOhQpfXJycn44IMP4OnpCaFQCFdXVwwaNAinT7+cc9LDw0Ptsa1cubLCYyOkIg0uQZLJ5LgfkaS0rJivh9lgq6Cx93J073YZXo3nw8iobs5STgghpPaJmjaF2aBBNbIvnoMDXH/5GRyjmhm4qFrkMiD2AnBnb+m/cv1NmluRkJAQfPDBBzh//rxKwlNcXIzAwECsWLECwcHBOH/+PO7cuYMNGzYgPT0d33//vU7xNMnNzcV3332ncb1EIkFgYCCys7Oxf/9+PHjwALt27ULz5s2RlZWF0aNHIykpSfHo3Lkzpk+frrTM1dVVY/z4+HhERERg1qxZCA0NVVumX79+SEpKQlxcHI4ePYrevXtj9uzZGDhwIKRSKdq2bYuWLVuq3T4uLg7h4eGYNm2a2thxcXFo27Ytzpw5g1WrVuHOnTs4duwYevfujZkzZyqVXb58udJxJSUl4YMPPtB4bIRUpsE1sUuPz0NhTonSMo6cNexOWRl4JXEAWLAcE8h49gDDweWftyPjRQosHJ1g38gLjVq3g7MPDadKCCFElcOni1Dw77+QpqUpliXa2OFcm46Idm+MJ85uKBSKwJXL4JSWAu/4WLSLuo12UXeg7WVAUYsWcFm7BnznenDR7v4h4NhCIOeVhMLMCej3DdBssMF2m5eXh127duHatWtITk5GWFgYFi1apFi/du1a/PPPP7h27Rpat26tWO7m5oaePXuCZVmd4mnywQcfYM2aNZg5cybs7OxU1t+7dw+PHz/G6dOn4e7uDgBwd3dH165dFWWMXkmCBQIBjI2N4eDgoNV52Lp1KwYOHIj3338fnTp1wpo1a5TiAYBQKFTEc3Z2Rps2bdCpUycEBAQgLCwMb7/9NqZNm4bFixdj3bp1MDY2VmwbFhYGR0dH9OvXT+3+Z8yYAYZhcOXKFZiYvOy37efnh6lTpyqVNTU11fq4CNFGg7uDlBafo7LMvEAOxoBJkqDoDixTlsIyZRmskhbA+vm7ME9ZgZSiy0hPS0Dczeu4fGAX/lgyH7/Nn4UHly4YrC6EEELql9yMdERHnMc/f+1HVGB33PR0wvE2LTFnziJMXLYWW4aNw/k2HfHc3hEZFpZItbLBTR8/7A4ciAUfLsLEZWvwV9c+qOhbjmNqCtu5/4PHzh31JznaPUk5OQKAnKTS5fcPGWzXu3fvhq+vL3x8fDBhwgSEhoYqJT07d+5EYGCgUnL0KqbcrPCVxdNk7Nix8PLywvLly9Wut7W1BYfDwd69eyGT6ffOGsuy2Lp1KyZMmABfX194eXlh797K+8gBQJ8+fdCyZUvs378fADB+/HgUFxcrbc+yLH799VcEBweDy1XtepCZmYljx45h5syZSslRGQsLi6odGCFaanAJUlaa6qg9AhlgnWu42/K8klil5xy2CILiKFxtlow9fRLwyPnlyERp8XH4a903OPjdVyjIqd7kf4QQQuqvp7dvYv/Kpfh55lQcWf8trh3ejwf3b2N37wH4duo83PJpDrkWQ3An2Dli9YTpmDv7U6RYWoMxsQPPtRNE7SZC3G8BLKeug/3n22HSeRjkBTXTRK1a5LLSO0dqU77/lh372GDN7UJCQjBhwgQApU3IsrOzce7cOcX6hw8fwsfHR2mbYcOGQSwWQywWo0uXLjrF06SsH82WLVvw+PFjlfXOzs7YsGEDlixZAktLS/Tp0wdffPEFnjx5ovMxl3fq1CkUFBQgKCgIADBhwgSEhIRovb2vr6+if5OVlRWGDRum1MwuPDwccXFxmDJlitrtY2JiwLIsfH19tdrfwoULFee/7HHhAl2MJlXX4BIkuVT9VRnPFM3zQFQXv+iexnXFAjkutszAqbapkHDliuUxVy/hjyXzkZuRbrB6EUIIqXuK8vLw9w+rsferxYi9cQ0sW/rdIGc4OBQ4Bpfa9YGcq3sL+Bu+/vhg6QakD10Bo7ZTwXfpDkbkBWmmMfL+SUbG71FI+voK0rfdR/GTOnyB7mmE6p0jJSyQk1BaTs8ePHiAK1euYOzY0uHPeTweRo8eXWlysGnTJty8eRNTp05FQcHLKT6qGq9MUFAQunXrhs8++0zt+pkzZyI5ORnbt29H586dsWfPHvj5+eHkyZNaxdckNDQUo0ePBo9X+j4cO3YsLl68qDZRU4dlWaU7aVOnTsX58+cV24eGhqJnz57w0jCKojZ32F41f/583Lx5U+nRrl07nWIQ8qoGlyDxhepHiWsTU2SQ/XFLnkNQ/KDScs/tC3G8Q4pSkvQiKRF7v1yMkqJK5qoghBDSIGQlJ+H3T2Yj6kK4yrrjPYfgkadfteKnCTiY0c4IGQINvZLkLIruZSBty21k7n0IeZHhLh5WWV6KfsvpICQkBFKpFE5OTuDxeODxeNi8eTP27duH7OzSpLJJkyZ48ED5e9/R0RFeXl6wsrLSOV5lVq5ciV27duHGjRtq15uammLQoEH46quvcOvWLXTv3h1ffvllFY6+VGZmJg4cOIBNmzYp6uzs7AypVKpxsIbyoqKi0KhRI8XzgIAAuLm5ISwsDDk5Odi/f7/GwRmA0nPMMAyio6O12p+NjQ28vLyUHuX7SxGiiwaXIFk7q5+A1TZXjiYJJWrXVYdx7hGty6ZbluBCS+U7RpmJz3H+d+0+cAghhNRfeZkZ2P3FImSnqv6wf+jRFHd92+plP6kiDlY2E1ZaruBaClK+vwFppmEuIFaZ2F6/5bQklUrx22+/YfXq1Up3Im7dugUnJyfs3LkTQOndlJMnT2pMWHSNV5kOHTrgrbfewscff1xpWYZh4Ovri/z8fK1iq7N9+3a4uLjg1q1bSvVevXo1wsLCKu3vdObMGdy5cwfDhw9XLONwOJgyZQp+/fVX7NixAwKBACNGjNAYw8rKCkFBQdi4caPaY8nKyqry8RGijQaXINm5m2lc1/96PoQlco3rdcUvvA1R/j86bRPvUIgnTsp/7LdOHUPCgyi91YsQQkjdc/zH9chNT1NZLuHycKq7fkdlC7fn45xt5fPuyTKKkPbLHchy9X8Bscrcu5SOVqdxbD4GMHMuLadHf/31F168eIFp06bB399f6TF8+HBFs7iPPvoInTt3RkBAANavX4/IyEjExsbi+PHjOHr0qGLQAW3jaeOrr77CmTNnlO5c3bx5E0OGDMHevXtx//59xMTEICQkBKGhoRgyZEiVz0NISAhGjBihUudp06YhPT0dx44dU5QtLi5GcnIyEhISEBkZiRUrVmDIkCEYOHAgJk2apBR3ypQpSEhIwKJFizB27NhK7/Bs3LgRMpkMHTp0wL59+/Do0SNERUVhw4YN6Ny5s1LZ3NxcJCcnKz1yclQH7SJEWw0uQbKwN4a1i1jtOrNCFgOv5utlRDuONAOmmb9Uadurvi8gZ16pA8si8u+D1a4TIYSQuunu2VOIuxWpdl20Vwvkm5jqfZ87PARalZNlFuHF3od633+VcbilQ3kDUE2S/nveb2VpOT0KCQlB3759YW5urrJu+PDhuHbtGm7fvg2RSITTp09j4cKF2Lp1K7p164amTZtizpw56Nq1K/7880+d4mnD29sbU6dORVHRy7t9Li4u8PDwwLJly9CxY0e0adMG69evx7Jly/Dpp59W6Rxcv34dt27dUrr7U8bc3BwBAQFKid2xY8fg6OgIDw8P9OvXD+Hh4diwYQMOHjyoMjqdm5sb+vbtixcvXqgM062Op6cnIiMj0bt3b8ydOxf+/v4IDAzE6dOnsXnzZqWyS5YsgaOjo9JjwYIFVToHhAAAw+raE06PcnJyYG5ujuzsbJiZab7zo6t7FxJwdrvmfkG3PAQ43N4ELKdqE8hypOkwT/0GPGlyVauInpE2aJT8sjkgh8vDuz/+CmMz1Q9SQggh9VvoR+/hReJztet+H/oOkhzcDLLf/Rfy4Fag3de85ShvmLTRrtmaob6/laidB8m5NDky4DxIhBDS4CaKBQDfTo64dfoZXiQXqF3fMq4ElnlyHO5ggkxT3a5ACQquwjQzDBx59W7dPnbOV0qQ5DIpkh5Fo3HbjtWKSwghpG6Jv3tLY3Ik4fKQbGe4eYluWHLhVqDdQAy54c+0TpBqRLPBgO+A0tHq8lJK+xy5d9H7nSNCCCmvwTWxAwAun4OAyc3AVHCHyC1dineOZ6PVY+06p/KKHsAsbR3M0zdUOzkCgHSLYpVlKU9iqh2XEEJI3RJ787rGdWnWDmAN+IM/2kz72NK0QhQ9zjJYXaqEwwUadQeajyj9l5IjQkgNaJB3kADAvpEZeo71rrCpHV8G2ORqHrRBUHANgqI74BdFgyetaE4G3RUJ5SgQyGBc8vLDPjcjQ6/7IIQQUvsquviVa2Kg5mn/SRXq1pS86MELiBpbGKYyhBBSTzTYBAkA/Lo7g8NlcG7HQ8ikLxMhVpYDuSwVLFuMFLE3AGO124tfbAdXZriJXEv4cqUEqWyyQEIIIQ1HVnKS5pVM1frCakuuY3xJQq6BakIIIfVHg06QAKBpFyfYe5jj2M//IPVxBGQlUQD7sm9SEccKgIY214xhWyByyvWbFYn1P4oRIYSQ2iWXae4DJDLwROEWEt3GYZKm17E5kQghpBY0+ARJUlKMWyd3IDnqsNo7NNwKJjyTca3BlaYapF6MHDAuUm5Lbe/haZB9EUIIqT18oUjjOruMCu4u6YFPTsWTepbHyqglAyGENMhBGspkJj7Hb/NnIfLvgxqbr1nkZGrcXipoZKiqwTyfD55c+fQ7eHkbbH+EEEJqh7Wru8Z1RsWFsMwyXFNu/2zdEiRGQIMgEEJIg7qDxLIsnt65iQcR55Hw4D5eJCZUuo19muYyElFTIPdvfVZRwSFD+Yqio7cvLB0NN9QrIYSQ2uHQuAkeX/tX43q/hzfwT4dAve/XI08G/2zd7gjx7dX3ySWEkNdJg0mQHl+/jHPbQvEiqfKk6FWuSXHgSSWQ8vgq60pELSDj2hhkoAafeLHS89ZBA/W+D0IIIbXPu1M3XNz9O6BhXvYWUddwqU0vyNR8D1XHiGcSnbcROIsrL0QIIQ1cvW9iJykuwtEfVuPPb7/QOTkCSps3eD++q34lw0Ghab9q1lCVU5oIlnkCxXNnXz/4du2p9/0QQgipfVZOznDza6FxvUlhPrpcD9frPr1zZFVKkIya2+i1HoQQUh/V6wSppKgQe79agvsXqvfF0uHWP+BoGKyh0DQQEkHjasV/FU/KoPNda8VzvlCEoPdngzHwUK+EEEJqT7cxk8BwNH/ldrh5AY4pz/SyL75MjiV3i8DTbQA7CBqZg29vopc61GfJycn44IMP4OnpCaFQCFdXVwwaNAinT59WlPHw8MC6detUtl26dClatWql9JxhGDAMAy6XC1dXV7zzzjvIzFTt/xwREYH+/fvD0tISIpEIzZs3x5o1ayAr9/uEYRiIRCI8ffpUafnQoUMRHByseB4cHIyhQ4fqfGxlGjVqhFOnTuHs2bNgGAZZWVkaz9lff/2Fnj17wtTUFMbGxmjfvj3CwsKUysTFxYFhGNjZ2SE3V3k4+VatWmHp0qVKy2JiYjB16lS4ublBKBTC2dkZAQEB2L59O6RS9SNDlp1rTY+lS5cq6qHu8e+/pU1hw8LCFMs4HA4cHR0xevRoxMfHK+2vV69eYBgGK1euVKnLgAEDFPusTGFhIaysrGBjY4Pi4mK1Zfbt24devXrB3NwcYrEYLVq0wPLlyxXvpfLvvTJlx3vz5k0EBwdXeH48PDyUjqv847333qvwOHR5f3399dfgcrlYtWqVyjpdz7+u9dRGvU6Qjqz/FokP7lc7jm1mCjreOK9+JcNBrvW7kHP086XR8Z4VTAtLWzbyBEIMmbcYlg5OeolNCCGkbnJs4oN2A4dpXM9hWQw7+jusXlRv5FSuTIavbxfDt4JJ0NViAPMgzYNJ1BaZXIaryVfx95O/cTX5KmRy3Qad0FVcXBzatm2LM2fOYNWqVbhz5w6OHTuG3r17Y+bMmVWK6efnh6SkJMTHx2Pr1q04duwY3n//faUyBw4cQM+ePeHi4oLw8HBER0dj9uzZ+PLLLzFmzBiw5ZpnMgyDJUuWGOzYbt++jRcvXqBnz8pbt3z//fcYMmQIunbtisuXL+P27dsYM2YM3nvvPcybN0+lfG5uLr777rsKY165cgVt2rRBVFQUNm7ciLt37+Ls2bN4++23sXnzZty7d0/tdklJSYrHunXrYGZmprTs1fqcOnVKaV1SUhLatm2rWF+2bUJCAvbt24cHDx5g5MiRKvt0dXVVSQYTEhJw+vRpODo6VnicZfbt2wc/Pz/4+vrizz//VFn/6aefYvTo0Wjfvj2OHj2Ku3fvYvXq1bh16xa2bdum1T4AYP369UrHCwBbt25VPL969aqi7PTp01XOz7fffqsxtq5/O6GhoViwYAFCQ0PVxtP2/OtaT23V2z5Id86cwJPIq5UX1FLnyHA8d/LAMyfVketkfEdk286HedoqcOT5VdsBC3SIskSThNL23WJrGwz4YB5cmvpXp9qEEELqia6jJyI9Pg6xN6+rXW9SlI+xB3/B4b6jEe+ie8sF44JczLn+FL0KdE90xF2cIPQw13k7Qzr19BRWXlmJlIIUxTJ7Y3t83OFj9HXva5B9zpgxAwzD4MqVKzAxeXlh1M/PD1OnTq1STB6PBwcHBwCAs7MzRo4cia1btyrW5+fnY/r06Rg8eDC2bNmiWP7222/D3t4egwcPxu7duzF69GjFulmzZmHNmjWYP38+/P21+x2hy7EdPHgQ/fr1A59fcb+4Z8+eYe7cuZgzZw5WrFihWD537lwIBAJ8+OGHGDlyJDp27KhY98EHH2DNmjWYOXMm7OzsVGKyLIvg4GB4e3vj4sWL4Lxy57VJkyYYO3asSsJYpuw8A4C5uTkYhlFaBgDp6aX9yq2trVXWverVbR0dHTFt2jR8+OGHyMnJgZmZmaLcwIEDsXv3bly8eBFdu3YFAPz666944403VO54aBISEoIJEyaAZVmEhIQovdZXrlzBihUrsG7dOsyePVux3MPDA4GBgRXe2SvP3Nwc5ubKf+cWFhZqz4OxsXGF56c8Xd5f586dQ2FhIZYvX47ffvsNERER6NKli1IZbc+/rvXUVr28g1RSWIBzv4foNSZXLsdbR7fBNeGJ2vVSYWNk2S+FRNBE59hGRVwEXLdFszgzcLhcNA8IQvB3myg5IoSQ1wiXx8PgeYvh3ambxjLGRQUY/ddWBJ47CKNC7S7IMXIZ/B7cwNwDuzA031Xnegm9LGD+puGmtaiKU09P4X9n/6eUHAFAakEq/nf2fzj19JTe95mZmYljx45h5syZSj/wylhYWFR7H3FxcTh+/DgEgpf9kE+cOIGMjAy1d1sGDRoEb29v7Ny5U2l5165dMXDgQHz88cda7VfXYzt06BCGDBlSady9e/dCIpGorfu7774LsVisUvexY8fCy8sLy5cvVxvz5s2biIqKwrx585SSo1fVdLeE1NRUHDhwAFwuF1yu8lD4AoEA48ePV0p6w8LCtE6oHz9+jEuXLmHUqFEYNWoULly4oNR8cvv27RCLxZgxY4ba7fXxvqwuXd9fISEhGDt2LPh8PsaOHYuQkIp/01d0/g2lXiZI986fQXF+Fe/kVEAgKcHII2HofO2M2j5JMr4DsuwXI9dyMqS8yrNVQQkHfk9MMeJfD3Qwb40uI8dj+sateOOdDyA0pqFUCSHkdcPj8zHoo4/x5qy5EJpoHjGuVdRVvLftW/Q/vQeeT6Nhkq/cZ4MnKYFjcjw6XwvHu9tXY9DZQ+htFgAOo9vXuqipFWwmNwPDqzs/B2RyGVZeWQkWqncJypZ9c+UbvTe3i4mJAcuy8PX11ar8woULIRaLlR6v3kUpc+fOHYjFYhgZGaFRo0a4d+8eFi5cqFj/8OFDAEDTpk3V7sfX11dR5lVff/01jh07hgsXLuj12BISEnD79m28+eablZZ9+PAhzM3N1TYlEwgE8PT0VKl7WZ+dLVu24PHjx2pjAoCPj49iWWpqqtJ53rRpU6V1q0yXLl1UXr9XZWdnQywWw8TEBPb29ggPD9eYAEydOhW7d+9Gfn4+zp8/j+zsbAwcqN3oxKGhoXjzzTdhaWkJKysrBAUFKSVbjx49gqenZ6V38/Rt06ZNKudn+/btasvq8v7KycnB3r17MWHCBADAhAkTsHv3buTl5SmV0/b861JPXdTLJnb3zur/ylEZrlyObtfOwOfJPVxt2Q0PGvsrDwHOcFBk2hdF4gDwi6NhJX0EZ+Y5jORZ4DAszARm8LXyhZfIHZ0s2sFYaAJTaxtwaijjJYQQUvc1694bjdt2xIFVYUi4fxyA6o99nlwGv0e34PfoFgCgQGSMYoEIXLkM4vxccP6bAJ3L8NDVbhjMBNqPQMcIubAY6AmT9vpvmlJdkamRKneOXsWCRXJBMiJTI9Heob3e9qup2ZYm8+fPVxoUAQA2bNiA8+eV+zT7+Pjg0KFDKCoqwu+//46bN2/igw8+qPb+mzVrhkmTJuHjjz/GxYsXKyyrS+xDhw6hW7duBr0zERQUhG7duuGzzz7Djh07Ki1vbW2NmzdvAijtmF9SUlLtOuzatUtjUgoApqamiIyMhEQiwdGjR7F9+3Z89dVXasu2bNkSTZo0wd69exEeHo6JEyeCx6v8J7ZMJsOvv/6K9evXK5ZNmDAB8+bNw5IlS8DhcHR+X+jL+PHj8emnnyots7e3V1tWlzru3LkTjRs3RsuWLQGUDtDh7u6OXbt2Ydq0aYpy2p5/Xeqpi3qXIElKipEap74ZnD7ZZqagf/g+9I74G88dPZBs64xCJze4tGgNYy4HTU2M0Mq0CTqYm4DHoRHoCCGE6IbDEyI3yx9Cc3eU5B8GK31eYXnjogIYFxUoL+OaopPdINiKtGtaJxFmgtO6CC6Bb4FrUrNXpLWVVpCm13LaatKkCRiGQXR0tFblbWxs4OXlpbTMyspKpZxAIFCUW7lyJQYMGIBly5bhiy++AAB4e3sDAKKiolT6YZQtb9asmdo6LFu2DN7e3mo79r9Kl2M7dOgQBg8eXGk5oLTu2dnZSExMhJOT8oBTJSUlePz4MXr37q1225UrV6Jz586YP3++Sl0B4MGDB2jdujUAgMvlKs6hNomHNlxdXVVev1dxOBzF+qZNm+Lx48d4//33NQ6KMHXqVGzcuBH379/HlStXtKrD8ePHkZCQoNTnCChNnE6fPo3AwEB4e3vjn3/+gUQiqfAukpmZGbKzs1WWl/VRKt/3qDLm5uYVnp9X6fL+CgkJwb1795ReR7lcjtDQUKUESdvzr0s9dVF37qlrKf1pHFi5jqPzVINRcSGaxEWh+9VTmJXyECH+jfB9U3fMcLNDF0sxJUeEEEKqJOHBC5QUSsFwjCA0HQWecV+A0a75NQdcNDZthX4u07ROjtK89uJJz/8hwf7HOpscAYCtsa1ey2mrrHnTxo0bka+mGb8uneErsnjxYnz33XdITEwEALzxxhuwsrLC6tWrVcoeOnQIjx49wtixY9XGcnV1xaxZs7Bo0SKV4cBfpe2x5eXlITw8XKv+RwAwfPhw8Pl8tXX/8ccfkZ+fr7HuHTp0wFtvvaXSj6p169bw9fXFd999B3kN/t6rzMcff4xdu3YhMjJS7fpx48bhzp078Pf315jQlhcSEoIxY8bg5s2bSo8xY8Yo+uWMGzcOeXl5GpsVlr12Pj4+eP78OVJSlO++RkZGQiQSwc3NTcsj1Z227687d+7g2rVrOHv2rNLxnj17FpcuXaowwars/OtbvbuDVJCjmh3XFHtP/WeohBBCXk9p8eX6FQlbgCvwg1zyCBz+Rcgl6ZDkv0xkeBw+LAUOcDBqBE/TFhBxtZt+Qs6RINX3d2S7nAMAFBbGQyJ5AT7fUn8Ho0dt7NrA3tgeqQWpavshMWBgb2yPNnZt9L7vjRs3omvXrujQoQOWL1+OFi1aQCqV4uTJk9i8eTOioqKqvY/OnTujRYsWWLFiBX744QeYmJjgp59+wpgxY/DOO+9g1qxZMDMzw+nTpzF//nyMGDECo0aN0hjvk08+wc8//4zY2FiVOxG6HtuxY8fg7e2tmA/nVXfu3IGpqaniOcMwaNmyJb799lvMnTsXIpEIEydOBJ/Px8GDB7Fo0SLMnTtXaQS78r766iv4+fkp3U1gGAZbt25FYGAgunbtik8++QRNmzaFRCLB+fPnkZaWppeO+hkZGUhOTlZaZmFhAZFIpLa8q6srhg0bhiVLluCvv/5SWW9paYmkpCSt+wqlpaXh8OHDOHTokMpIhJMmTcKwYcOQmZmJjh07YsGCBZg7dy4SEhIwbNgwODk5ISYmBj/++CO6deuG2bNnIygoCD4+Phg7diy+/PJLODg4IDIyEosXL8bs2bN1PmcFBQUq50coFMLSUv3nhjbvr5CQEHTo0AE9evRQ2b59+/YICQlROy8SoPn861pPbdW7O0i1yaOl/j+MCSGEvJ4yk1SvtDIMF1yBLxzaCeA3IQb+wQ/QbPwj+E18iOaTY9C2jTuaWXTWOjkqNHuMp50+VyRHZeIeaNcEqDZwOVx83KH0rgID5VYaZc8XdlgILkf/fXs9PT0RGRmJ3r17Y+7cufD390dgYCBOnz6NzZs3620/H330EX755Rc8e1Y6OfCIESMQHh6O+Ph4dO/eHT4+Pli7di0+/fRT/PHHHxWO2mZlZYWFCxeiqKio2sd28OBBjc3revTogdatWyseZXMGzZkzBwcOHMCFCxfQrl07+Pv7Y8eOHdi8eXOl8x15e3tj6tSpKnXv1KkTrl+/Dh8fH8ycORPNmjVDly5dsHPnTqxdu1ZlHqmq6Nu3LxwdHZUelTVV/Oijj3DkyBGNTegsLCzUDuKgzm+//QYTExMEBASorAsICICRkRF+//13AMA333yDHTt24PLlywgKCoKfnx/+97//oUWLFpg8eTKA0qaHJ06cgJubG8aOHQt/f398/vnnmD17tqI5py5+/vlnlfOj6W4gUPn7q6SkBL///juGDx+udvvhw4fjt99+g0Qi0bgPdedf13pqi2Frq/cXSkeyMDc3R3Z2ttKY5hVJfvwI2xd9ZOCaqTI2t0CP8VPg2aY9jEy1qyshhBCiyZFNtxF3O13tOucum2Hqor4piSDPCRbP+sA0pT14Jar9CuTcQuRb30OW6xkUWN0H1Py2Tvz3bTRtPRbt3vSoUt2r8v2tK3XzIDkYO2Bhh4UGmwfpdSaVSmFvb4+jR4+iQ4cOtV0dQmpVvWtiZ+PmAQ6XB7lMWqP7LcjOwrFNa8HjC+Dq3xF2nn2Ql2WEgpxiAICRWABbNzHsPc3h4m0JhvomEUIIqQCPr7kRR0WXLkvEiUht+jtSm/4OXpElhLkuYGRCsBwpJMYpKDFJBpiKr32yLAeXDz6BXCpHh0GeVT0Eg+rr3he9XXsjMjUSaQVpsDW2RRu7Nga5c0RK57L56KOP0L69/kYGJKS+qncJEo/Ph31jLyQ91G6UGX2TSkoQe+MCYm9cAs+oO7jCVopb309ulo6oY2otgn9PZ7Ts4wpuHZpbghBCSN1hYa95QAZZkXYjTklFLyAVvdB539LC0vhXj8TBzt0MHi20HyK8JnE5XL0O5U00s7Ozw+LFi2u7GoTUCfXy13vz3m/UdhUASCEtDIe04ITK+O+5GUW4tP8xdq+4itSnObVUP0IIIXWZrZupxnVFL9wNtl+WZVCc9XJEq7Pbo1FcoLndPyGEvG7qZYLk260njMx0G8/dUGQl9yAtPKN2XWZiPvavilTcWSKEEELKuPhYgidU31ysIN1wo6YWZ7lALn05Uld+dgnunK14DiZCCHmd1MsEiS8Qos+Ud2u7Ggqy4luQSdRPXiuTynH8l7t4Hp1Zw7UihBBSlwmMePDuoH7Gd0mePfJTfQyy36wn3VWW3buQCLm81sZsIoSQOqVeJkgA4NulB3y79qztaihI8k+BZdU3UZBLWZwKi0JxYc0OLEEIIaRuax3opnGwhhcP9T9Sm6zYBDlPO6ssz3tRjJRYahJOCCFAPU6QACDo/TnwaNW2tqtRis2DrOSBxtX5WcW4tD+mBitECCGkrrOwM0bHIepHkctLbIXchFZ63V/KjTFKzeteRX1mCSGkVL1OkHh8PobOX4w2/YdUOIlaTZEV36pwffSlZBTmldRQbQghhNQHLfu4onFrW7Xrkq9PUIw4V105z9oiJ76TxvWZiaoT1xJCyOuoXidIAMDl8dF78nR4tHkHDNehVuvCylLAspoTIJlUjqiIpBqsESGEkLqO4TAIfNsPXu3sVNbJiswRf+4jSAurNxlrXpIfki5Pq7CMpFhWrX0QQkhDUe8TJAAozCtBylMxhGbjIDAdD66wLTg8FwCCGq8LK02pcH3CA93nqyCEENKwcbkcBL3tj94TfMHlKbeIKMlxxtMzH6MgTfeR7Vg5g8wHgXh+cRZYOb/iOvBqvyUGIYTUBQ0iQUp+nA25rHT0HQ7PHnzjnhCYjgLPuEeN14WV51a4Pi2+4vWEEEJeX826OWHc8k4wMlVOZiT5togPn4+UyDGQ5FtpFasgrQniwxcg9dYoQF75vPAVTVz7uggODgbDMGAYBnw+H/b29ggMDERoaCjkcrminIeHB9atW6f0vGy7Vx8rV64EAMTFxSktNzU1hZ+fH2bOnIlHjx7V9GESQipR+SdmPZCqMemo+SFL5fJ8qJ/VolRhrgSSYhn4Gua+IIQQ8nozszLCqEXtsf+768jNKH5lDQcvYgLw4nFviB1vw8T+PkSWT8EXp4LhyCCXClGc7YKiF+7IiW+P4mwnnfrnVjRxbW1hZTIUXLsOaVoaeLa2MG7XFgzXsN+f/fr1w9atWyGTyZCSkoJjx45h9uzZ2Lt3Lw4dOgQeT/1Pp+XLl2P69OlKy0xNlc/pqVOn4Ofnh4KCAty5cwfr169Hy5YtcfjwYQQEBBjsmAghumkQCVJeZpHa5QwjrOGaAPKSKMCofcVlaK4JQggh5aSVSHA3txDZUhk4DIPGM/wQvz0GmU/KjS7HcpCX2Ap5ia1eLmJlkEseQiaJBStNBSvfjdKLhFwwXGtwuPbgCJqAw3NXmzQJRFw4NrYw5OHpLOfECaSs+BrS5GTFMp6DA+wXfQKzN94w2H6FQiEcHEr7NDs7O6NNmzbo1KkTAgICEBYWhrffflvtdqamportNLG2tlaU8fT0xKBBgxAQEIBp06bh8ePH4Bo4+SOEaKdBJEishnyD4aofFciQWHk65NIkcHiOatdzOAz4ggbRspEQQkg1PS8qwbbEDOxNzkRCsepcerwOPHi3tYXvjVz4PCkCT668nmXlkBVfh7ToGsAWqtmDDKwsFTJZKmQld8BwLMAz6gquQHkSWp9OjnWqZUPOiRNImD1H5QtempJSunz9OoMmSeX16dMHLVu2xP79+zUmSFXB4XAwe/ZsDBs2DNevX0eHDh30FpsQUnUN4pe60Fh9nsdwrIBauIskrWC4b0tHE3C4DeK0E0IIqaJiuRxfPU5Ep3/vY/3TFLXJEQBIWeA+R4b9bY3xy0gbvGhtDvx3A0gue4GS3D8gLbygITlSxcqzIMk/gpK8w2Dlpa0veHwOWga46uW49IGVyZCy4mv1Vz//W5ay4muwspoddc/X1xdxcXEa1y9cuBBisVjpceHCBa3iAqgwNiGkZjWIO0i2rurbTTMMAy7fB7KS2zVaH7kkVuM6O/e618abEEJIzXlWVIKJt58gOl9983BN0iDHD95cjGvrgUZbrqMkdw/AFlSpDnLJI5TkZUEgHoGOQ5rD3NaoSnEMoeDadaVmdSpYFtLkZBRcuw6TjjV3x4Vl2Qr7dM2fPx/BwcFKy5ydnbWKC6BOzOdICCnVIBIk+0aa54fgilrWeIIEthCsPAcMR7Ve3h3sa7YuhBBC6oznRSUYGvlI4x0jbezIzUGL9kV441QBqvOTmpWlgcMeQfNeQdWIon/StDS9ltOXqKgoNGrUSON6GxsbeHnpPhR7VFQUAFQYmxBSsxpEWy9LBxONd2Y4XFtwBf41XKPSpg/licR8uPhqNzwrIYSQhkUqZzH1bmy1kqMyt72a43rzztWOU5gTj2t/Hah2HH3i2WrXf1jbcvpw5swZ3LlzB8OHD9drXLlcjg0bNqBRo0Zo3bq1XmMTQqquQSRIAODfU/NtbJ5xT4BT003bVNtGlxRKUZBTUsP1IIQQUhf8EJ+C27na9RXSxj8dAvHCrPoX3S7t3YHcjHQ91Eg/jNu1Bc/BAdDU5IxhwHNwgHG7tgbZf3FxMZKTk5GQkIDIyEisWLECQ4YMwcCBAzFp0iSN2+Xm5iI5OVnpkZOjPAJhRkYGkpOT8eTJExw6dAh9+/bFlStXEBISQiPYEVKHNJgEyaeTI+w81De1YxghBOJhACOqwRqptl6Uy1hERSTWYB0IIYTUBdkSKdY/TdVrTAlfgIvtqz93jkwiwe1TR/VQI/1guFzYL/rkvyflkqT/ntsv+sRg8yEdO3YMjo6O8PDwQL9+/RAeHo4NGzbg4MGDFSYxS5YsgaOjo9JjwYIFSmX69u0LR0dHNG/eHB9//DGaNm2K27dvo3fv3gY5FkJI1TAsq2mQbMPLycmBubk5srOzYWamuR+RtjKT8rF7xVXIJHK16+WyDEjyDoGVqzZ/0zeuUU/whG1UOl1aOppg3OcdDb5/QgghdceWZ6lYEqP/C2RcmRTvbfsWxkVVG6yhjImlFd778Tety+v7+1vtPmppHiRCCGkQgzSUsXI0Qb/p/ji65Q7kUtW8j8O1hsBsIqSFFyErjkTpJHqGISs8B1lJNHiCZmDZAoAtAsBBWqwZYm8K4eLrC76oJu9oEUIIqS0HU7MMElfG5eFRo2ZoGXWtWnHyX2QiOzUF5nZ1ZyAhszfegGlAQOmodmlp4NnawrhdW4PdOSKEkDINKkECAI8WNhg4qyVOht5HoZr+PgzDA9+4J7jCFijJ+RWA+rtNeiFLgbQwRWXx/q/PgS8yQrPuvdD6zcGwdq47808QQgjRL6mcxb08/fU9Ki/Z1rnaCRIApMY+rlMJElDa3K4mh/ImhBCgAfVBepWrrxXGLekI7472Gvt4criW4Ar8arZir5AUFeLWyaP4bf4HuLR3J+Q1POEdIYSQmhFbWIwiueFaLKRZ6Sepyc/O0kscQgip7xpkggSUDqkdOMUPE77ojDZB7rB2EYPDUc6WBIJWYFC7t+rlMiki9mzH7uWLUFyQX6t1IYQQon/5MgO2VAAgEQgNGp8QQl43Da6JXXlmNkboPKwxOg9rDKlEhpz0Qjx9bxbkTx/DqCgDT61Ncd+l5uZS0CQh+h72f70UIz77Enz6siOEkAaDV53ZXLXAkeunBYKxuble4hBCSH3XYO8gqcPjc2HlKIb3ohkwLs4AAxbuGTlwzsypfOMakPgwCv/s+LW2q0EIIUSP3I2EMGSOZJGdqZc49o0a6yUOIYTUd9VKkAoLC/HPP//g/v37KuuKiorw22/aDxlak0w6doDF+GBwLDzAs/ZCqxwjuGXk1Xa1AACRxw4jIVr1fBJCCKmfTHlcNDIyXMsA+/TqDx9uYmEJczsHPdSGEELqvyonSA8fPkTTpk3Ro0cPNG/eHD179kRSUpJifXZ2NqZMmaKXSuqLJCUfLw7GIOnbq5DldYZJr0Uw7r4A4t6L0anNUnQW94CQreVWhyyLywd21W4dCCGE6FVPK1ODxfZ4FlPtGP69A/VQE0IIaRiqnCAtXLgQ/v7+SE1NxYMHD2BqaoquXbsiPj5en/XTC1luCdJDbyFlbSTyLyVBllmkUobhcOFm2xkDPGaBz9Tu/ERxt24gKyW58oKEEELqhcnO1gaJ65D6HA7VvIPE5fHQom8/PdWIEELqvyrfLomIiMCpU6dgY2MDGxsbHD58GDNmzED37t0RHh4OExMTfdazSgrv3EHmzlOQlzQDwzPWahsuw0cJW4Qsc2ukWtlDwheCw8phkZ0B24xk8GVSA9caYFk5Ym9eQ+uggQbfFyGEEMPzNTFCoLUZTmbot89rxxvnqx2j0/CxMLOx00NtCCGkYajyHaTCwkLweC/zK4ZhsHnzZgwaNAg9e/bEw4cP9VLBqiiOjcXTiZPw/MMVkEtba50cPRJzsMJPhO+nfIpfxn6EQ0HjcLTPcBwJGIntb72HDVM/wx+DpiK6sT9kHMOOb5HypPpNJgghhNQd3/q4wIynv+8O78d34R1bvT6rjl4+6DBkhJ5qVP8FBwdj6NChKsvPnj0LhmGQlZUFAJDJZFi7di2aN28OkUgES0tLvPnmm7h48aLSdmFhYWAYBk2bNlWJuWfPHjAMAw8PD5Xy5R8iUe22bCHkdVPlO0i+vr64du2ayh/9Dz/8AAAYPHhw9WpWRS9270bKiq/B8C1h3GsxGE7l8xzl8IBVTUU46sSvsJycy8UzZ088c/aEZVYa3gzfD+eUZ/qqupIXiQkGiUsIIaR2OAoFWOPjhnfuxaG6MyNZZKcj8MKhasWwcfPA0IVLwOHW7nyAFZHLWSQ9ykJ+TjFMzIRwbGKhMqdhTWNZFmPGjMGpU6ewatUqBAQEICcnBxs3bkSvXr2wZ88epSTLxMQEqampuHTpEjp37qxYHhISAjc3N5X4ZmZmePDggdIyRtOs94QQg6hygjRs2DDs3LkTEydOVFn3ww8/QC6X48cff6xW5XSVEboVqd9+C4CBUcdgMNyKEx4AuGfGwdzWRkgX6XZV74WFLXYOmY4u186gS+TZqlW4AjKpRO8xCSGE1K6BdhbYIHfDnKh4VLXBtmVWOkb9tRXGRQVVrkfjdp3Q7/05EInFVY5haI9vpOLCrkfIzypWLDOxEKL76CZo3Lr2mgTu3r0be/fuxaFDhzBo0CDF8i1btiAjIwNvv/02AgMDFV0NeDwexo0bh9DQUEWC9Pz5c5w9exYfffQRdu7cqRSfYRg4ONCIgoTUpirf6//kk0/w999/a1y/adMmyOWGnT38VblnzvyXHAE8107gWjaqdJt7ZhzMaG+sc3JUhuVwcLFDX5zvoP/Rf3gCgd5jEkIIqX0jHKzwm6sLrHN0n+DVPzoSE/b/CLO87Crtm+GYg2/SH636vVfnk6NjP91VSo4AID+rGMd+uovHN1JrqWbAjh074O3trZQclZk7dy4yMjJw8uRJpeVTp07F7t27UVBQmtSGhYWhX79+sLe3r5E6E0J0U60xrePi4nDy5EmUlJSgZ8+e8Pf311e9dCLLzkbS558rngs8e1W6TS4PmNfaCPl6mOL8cpuesE9PhM+Te9WOVcbaRfW2OyGEkIaho40p3jmejWteIlz3EiLTVHMzN0YuR6Nnj9Du9kW4JzzRfWeMMbj8RuAIvMHheYBhGDy9kwGP5jbVOALDkctZXNj1qMIy/+x+hEYtbQ3S3O6vv/6CuFzyKJO9TGbLpjlRp2x5+X7YrVu3hqenJ/bu3YuJEyciLCwMa9aswZMnqq9ndna2yv67d++Oo0ePVul4CCG6q3KCFB4ejoEDB6KwsLA0EI+H0NBQTJgwQW+V01b6T1sgS0sHADAmdlrdPVrtK0JaFe8cqXOq+yC4JsZWq8nDq+w9vfQShxBCSN1jYiGEqQkfnR4WoePDIsQaX0ailRypNo4oFojAsCzM8rJhn5YA16S4Kt8xAgCB6ShwuFZKy1Ljc6t7CAaT9ChL5c5ReXkvipH0KAvOPpZ633/v3r2xefNmpWWXL19W+n3DsqzOcadOnYqtW7fCzc0N+fn56N+/v6Lf9qtMTU0RGRmptMzIyEjn/RFCqq7KCdJnn32GwMBAbN68GSKRCIsXL8aCBQtqPEGSFxcje98+xXOupUel28SacPCXc+X9k3RRYCTG1Zbd0PPyiWrH4nB5aNy2ox5qRQghpK6yb2SOuNvpYAA4Jd6FU0LVkyDNGDAcM5WlWcn5BtiXfuTnVJwc6VpOVyYmJvDyUr5I+fz5c8X/vb29ERUVpXbbsuXe3t4q68aPH48FCxZg6dKlmDhxotJIwK/icDgq+yeE1Kwq30K5e/cuVqxYAUdHR1haWmLVqlVITU1FRkaGPutXqbxz5yDLfvmlwjFzqXSbTbYpBqlLkp0LdL+mpMqrQ2eYWOj/qhghhJC6w7dTaUd8VpYDsIZIjgCABStT7a8jk+rj28owTMyEei2nb2PGjMGjR49w+PBhlXWrV6+GtbU1AgNV+yZbWVlh8ODBOHfuHKZOnVoTVSWEVFGVE6ScnBzY2Lxsv2xsbAwjIyNkZxvqQ169otu3lZ4zgornPLqTeR6XXW31Xg/bjGQMObET1W4NzTDoOHSkPqpECCGkDmvU0gZiSyHkMsNctCsjl6rG5wkMO5dfdTg2sYCJRcXJj9iydMjv2jBmzBgMGzYMkydPRkhICOLi4nD79m28++67OHToEH755RfFCHblhYWFIT09Hb6+vhrjsyyL5ORklUdNDnxFyOuuWoM0HD9+HObm5orncrkcp0+fxt27dxXLDD0fUlFUtPKCCj5AUguf4bL0HgqMB+i1DjxJCYYc3wGj4sLqB2NZxN68DjsPz+rHIoQQUmdxuBx0H+2Nw+siDLofVq564dLSQf0P+LqAw2HQfXQTHPvprsYy3UY1qbX5kBiGwe7du7Fu3TqsXbsWM2bMgEgkQufOnXH27Fl07dpV47ZGRkaV9ifKycmBo6OjyvKkpCQa/puQGsKwVelpiNI2spUGZxilkV/Ky8nJgbm5ObKzs2FmptpGWhuxo0Yr3UUSNAmC0G+4Sjk5K8PR57/gtqMt9g2YXKV9adLnnyNoe/eS3uJx+XxMXLmeRrIjhJDXwI4lm5D0QPO0GdXFFbYC37iP0rLmvV3QY7RqPxlt6eP7uzLq5kESWwrRbVTtzoNECGn4qnwHqa7c6i0/u7QsK15tuef5D5EnzYKE76zX/YvzctDq/mW9xpRJJLi0dycGzlmo17iEEELqnqZd3JH0wIA7YFSbq3m20n9Tc31r3NoOjVralo5ql1MME7PSZnW1deeIEPL6MFgjZLlcjr/++stQ4RX4zk5Kz2UvnoCVqo5s8zj3JgCAI9d9Yr6KtIy6Cq4BksVHVy4hP+uF3uMSQgipW+waGbZJNYernAxZOhjDxQDDYxsCh8PA2ccS3u0d4OxjSckRIaRG6D1BiomJwaJFi+Di4oJhw4bpO7wKkZ+f8gJpMSTPrygtkrFSpBclAAAsszP1uv8msff1Gq+MXCbF4+tXKi9ICCGkXrPzaAQOV/NEsdXFcO2VnncYRH1cCSGkInpJkAoLC/Hbb7+hR48e8PHxQUREBJYsWaI0b4ChGHfooLJM8vg02FfuFGWXpEGO0udWWWngS0r0sm+epATWL9L0EkudlCcVzyROCCGk/uMLRWjczjBz3zFcR3C4LwdTatzGDl5tqf8OIYRUpFoJ0tWrV/Huu+/CwcEB69atw5AhQ8AwDDZt2oT33nsP9vb2lQepJqPmzSFq1kxpmTw3ESWPjiqe50tfmSeJZeH+/LFe9m2VlQ4Oa7i+WBnP1fenIoQQ0rC0emOgQeLyhC0V/7d2FqPXeB+D7IcQQhqSKidILVq0wMiRI2FtbY2IiAhERkZi7ty5KoMm1ASrKcEqy0qij0CWUZoIseWSmFb39dN0jS/Vz50oTSTFhpklnBBCSN3i5t8Cnm3a6zUmw7UHR1A6346duymGfNQKIhO+XvdBCCENUZUTpAcPHqBHjx7o3bs3mpW7g1PTzAcNgkn37soLWRkK/v0essxY8DjKI/h4PHsE+7SEau9Xxq3WNFKV4vLpi4wQQl4Xge98AJGJWE/RuOCbBIHL46L9wEZ4a0FbGIkFeopNCCENW5UTpCdPnsDHxwfvv/8+XFxcMG/ePNy4caNW7iABgOMXy8GzLTdsqaQABRdXwyQ5RmkxA+DN8P3gyKTV2ucLc+tqbV8ZK0f9DklOCCGk7hJbWmHIvMXgCVWH5dYNB8ZWA9EmqDXGLe2IDgMbgcs12KC1hBDS4FT5E9PZ2RmffvopYmJisG3bNiQnJ6Nr166QSqUICwvDw4cP9VnPSvEdHOAWGqKaJMlKwLm9D6Jyo3vbZqagd8RRVEex0AgvzKyqFaMido28DBabEEJI3ePSzB8jFn0BE8uqfbfwhMboM+1/eHfj2+g6ognMbY31XENCCGn4GJZlWX0Fy87Oxvbt2xEaGorIyEj4+/vj9u3bGsvrcybuPKkMh9KycDUpHTeePEUGUzpkqlVOFpo8i4VVRhIs059AIJUobXe1RRec7dwPYKqWKw4+vgM+hhjqm2Ewde2PsKS7SIQQ8topzMnB4XUr8eye5u/Q8jzbtEff6TNhamVjwJqV0uf3NyGE1DV6vedubm6OGTNm4Nq1a4iMjESvXr30GV6tLIkUnz58jlYR9/C/6GfYmV2IaGs7pFlZI83KGg88GuOv7n3x29CJ+HHiApzp/CaK+S+bL7S/HYGRf/0Ks9wsnfbLkcnQ+Vo4vOKi9HxEpdybt6LkiBBCXkMZCc9wYNVynZIjC0dndB09sUaSo5okl8vw7N5tRF08h2f3bkOu58neywsODsbQoUNVlp89exYMwyArK0uxTCaTYe3atWjevDlEIhEsLS3x5ptv4uLFi0rbhoWFgWEYNG3aVCXunj17wDAMPDw8VMqXf4hEIo31Vle/Mh4eHli3bp3Sc3XxV65cqbJtUFAQuFwurl69qrKu/LmKi4tTG/fVR1hYmE51VScnJweffvopfH19IRKJ4ODggL59+2L//v0of81/586d4HK5mDlzpkqcsnqUPWxtbdG/f3/cuXNH5TjVHUu/fv0qrCep3ww2ykCrVq2wYcMGQ4UHAJzKyMHc6HiklGjXl6hYaITrLbvioacf+p09AI+E0lHuPBIeY8ruDYj074Rbzdojx1TzDOM8qQQ+j++i3a1/YJeZopfjUMEw6DhslGFiE0IIqbOiLoTjxE/fQ6rjfH1ZSQnYvuh/6DPlHbQM7G+g2tWsR5cjcCZsC/Iy0xXLxFY26BP8Dpp07FKLNQNYlsWYMWNw6tQprFq1CgEBAcjJycHGjRvRq1cv7NmzRyl5MDExQWpqKi5duoTOnTsrloeEhMDNzU0lvpmZGR48eKC0TJ99vJcvX47p06crLTM1NVV6Hh8fj4iICMyaNQuhoaFo377iURZdXV2RlJSkeP7dd9/h2LFjOHXqlGKZubk5Ll++XOV6Z2VloVu3bsjOzsaXX36J9u3bg8fj4dy5c1iwYAH69OkDCwsLRfmQkBAsWLAAP/30E1avXq02yXzw4AHMzMyQmJiI+fPnY8CAAYiJiYFA8HJQk379+mHr1q1K2wmr3VeQ1GVVTpD69OlTaRmGYXD69Omq7qJCvydmYMGDZ6jKLES5phbYO2AS3gzfD79HtwAAAkkJOt04j443LiDBwRUpts5Is3JAiUAAjlwOi+xM2KcnwCXpKYyKC/V7MOW0DOwP12bNDboPQgghdUvUhXD8vXENUMWW73KZFKd+2QS5XI7WQYaZV6mmPLocgUNrVqgsz8tMx6E1KzD4f4tqNUnavXs39u7di0OHDmHQoEGK5Vu2bEFGRgbefvttBAYGwsTEBADA4/Ewbtw4hIaGKhKk58+f4+zZs/joo4+wc+dOpfgMw8DBwcFg9Tc1Na00/tatWzFw4EC8//776NSpE9asWQMjIyON5blcrlJMsVgMHo+n1+NYtGgR4uLi8PDhQzg5OSmWe3t7Y+zYsUoJUGxsLCIiIrBv3z6Eh4dj//79GDdunEpMOzs7WFhYwMHBAXPmzMHgwYMRHR2NFi1aKMoIhUKDvh6k7qlygnT27Fm4u7tjwIAB4NfwcNR/p2Vh/oNnqE7nKZbDxdHeb8GouBCe8S8HlGDAwiU5Hi7JtTNJq4OXN3qOn1Ir+yaEEFI70p89xfEf11c5OXrVmdCfYOXkDPfmrfVQs5onl8twJmxLhWXCf92Cxu07gsPh1lCtlO3YsQPe3t5KyVGZuXPnYv/+/Th58qTSXaSpU6eiV69eWL9+PYyNjREWFoZ+/frB3t6+BmuuHZZlsXXrVmzcuBG+vr7w8vLC3r17MXHixFqrk1wuxx9//IHx48crJUdlxGLlIfK3bt2KAQMGwNzcHBMmTEBISIjaBKlMdnY2/vjjDwBQuntEXk9V7oP0zTffwMjISNF+dtq0aVi7dq3KQ9/SSiSYV83kqAzL4eJYz2EoEmhu11uTHJv4YPgny8GvoJ0xIYSQhkUul+HYpnWQSas39cRLLPZ++RkOrV6B5/fv6ilmzUmIuqfUrE6d3Ix0JETdM8j+//rrL4jFYqXHm2++qVTm4cOHavsUAVAsLz+ab+vWreHp6Ym9e/eCZVmEhYVh6tSpamNkZ2dXWgd1XFxcVLaLj1e94Ltw4UKVchcuXFCsP3XqFAoKChAUFAQAigRDn7Sta5n09HS8ePECvr6+lcaWy+UICwvDhAkTAABjxozBP//8g9jYWI31sLCwwI4dOzB48GCVfah7T6xYoXqHkzQcVb6DNH/+fMyfPx+XLl1CaGgounbtCh8fH0ydOhXjxo0z2Kg2y2ISkSnRXyfNfBNTnOsUhKDzB/UWk+HJwUq1zz0ZDouOQ8eg0/Ax4PJoclhCCHmdPLp8CSlPHuk/7pUIPLoSAe9O3RAw7X0Ym5nrfR+GkJf1Qq/ldNW7d29s3rxZadnly5cVP7bLVGUQ4KlTp2Lr1q1wc3NDfn4++vfvjx9++EGlnKmpKSIjI5WWVdS8rcyFCxdU+hKpGzBr/vz5CA4OVlrm7PxyYKjQ0FCMHj0aPF7pz8SxY8di/vz5ePz4MRo3blxpPbShbV3L6HK+T548qTi/AGBjY4PAwECEhobiiy++UKmHsbEx/v33X6xYsQI//vijSjx17wkrK8NN80JqX7UHaejcuTM6d+6M9evXY8+ePdi4cSPmzZuHxMREvSdJKcUS/Jmq/w/E+96t0OPyCf31LXIF3DwSkX7PEgWpmj/QODw5LLyy0bRXa3TqXXu3rQkhhNSeWyeOGDT+w3//wfOou3jr46Ww96z78+uJLTQPlFSVcroyMTGBl5fyeXr+/LnSc29vb0RFqR/Ftmy5t7e3yrrx48djwYIFWLp0KSZOnKhIQMrjcDgqddBGo0aNlAYpAKB2HzY2NhrjZ2Zm4sCBA5BIJEpJgUwmQ2hoKL766iud61WdupaxtbWFhYUFoqOjK40dEhKCzMxMpaRSLpfj9u3bWLZsGTiclxexy+rh4+OD1NRUjB49GufPn1eKp+49QRo2vQ3zHRkZiXPnziEqKgr+/v4G6Zf0R1ImpP9v787joqr6P4B/7qwMDAyrDigiiICgIi5hmrnhUqllLqlZ2m71POZT/exRW0wtLSut7GkTNctKK1O01LQ0TdNCRcV9JReURWBYh1nu7w9lcmRY5w4EfN6v13294txzv+fcqYAvZ5Ps1Ka/mRVKHI6Ubq72atMw5Os9ETH8HNqNOYWQfhfRLDYbflE58IvOQWB8BtrclYaYB06iVe/LiOrMNUdERE1Rcb4B548cqrqik4rycvHN7BnIOHfG5W05q0W7GGir2K7c088fLdrF1FGPyhszZgxOnjyJdevWlbv39ttvw8/PDwMGDCh3z9fXF8OGDcOvv/5a4fS6+rZixQq0bNkSBw4cQEpKiu16++23sWzZMlgsrt1qvSIymQxjxozBihUrcOnSpXL3CwoKYDabkZ2djbVr1+Lrr7+26//+/fuRk5ODn376qcI2nn76aaSmpuL777935atQA+BUgnTp0iW8/vrriIiIwMiRI+Hr64s9e/Zg9+7d1RoKrqndeQWSxyxzQR8iSZwrqgBcUAYjMXU8zFY51DoTfNoaENQ9A8G9LyO412U075QNz5ZFkKus0Om6wlvXRZK2iYioYbly5lSdtWUsKsT6hfNgKjXWWZu1IZPJ0W/i45XW6Tvh8XrboAG4liANHz4cEyZMQGJiIs6dO4eDBw/iiSeeQFJSEhYvXmzbwe5my5YtQ1ZWVqVraURRxOXLl8tdVmtt9u4tLz8/v1xsg8EA4Nroy8iRI9G+fXu765FHHkFWVhY2btxoi5OXl2eXhKSkpOD8+fOS9NGR1157DcHBwYiPj8fy5ctx5MgRnDx5EkuWLEFcXBwKCgrw+eefw8/PD6NHj7brf2xsLO68885K11K5u7vjsccewyuvvGI3pc9oNJb7vLKyKl8nRw1brROkO++8E23atMGePXswf/58XLhwAW+99Raio6Ol7J+dA/lFLot9OcD5Q1mtEPCr320AgIsFQdhwNqHS+jKZG6LblT+YjYiImobsC3W7Y2pO+iXs/Hp5nbZZG23je2DYs9PLjSR5+vnX+xbfwLVtuFetWoXp06djwYIFiIyMRK9evZCWloZt27Y5PGy2jEajgZ+fX6XxDQYDAgMDy10ZGRmS9P/ll18uF3vq1KnYu3cvDhw4gBEjRpR7RqfToX///nYJxrZt2xAXF2d3vfrqq5L00RFfX1/s3r0b48ePx5w5cxAXF4devXrhq6++wvz586HT6bBkyRIMHz7c4blRI0aMQFJSUqXJzb/+9S8cPXoU33zzja1s48aN5T6v2267zSXvSP8MglibVYa4NtQZGBiIZs2aVXp42c2LDG9kMBig0+mQl5dX5XqlUqsVrX6t/qniNSVYLXj+k1ecirFXF4ddvt1tX3upDJh/+ytQyBwPR7eLmougIB4IS0TUVO1evRI7V35ep23KFQo8/r9lcNd51zpGTX5+O8NqtVzb1S43B1pvH7RoF1OvI0dE1DTUepOGl19+WdJTnatidcHaoxuJTr7LCY9w7PKJtyszlHphX0ZH3KLff1NtARERLzM5IiJq4uSVLEp3FYvZjEO//IT44f/8n0EymRzBMR2rrkhEJKFaf2eeOXOmhN2omptcBo1MhmKJ5t/ezLO0EDJYYa3hrEMRQIpXR+z0vRVwkGQdvxpulyDJs4Fwr3+hZcsHne0yERE1cN6B5Q+8rAunknc3iASJiKg+1HoNko+PD3x9fctdoaGhGDRoEDZv3ixlPwEA7bXSb/xQJq7oOO4PTYHezVDtZ7KVPlgdeDd+8+sJUbD/KEUAokqGUyVtUAh3yHIAzyQ5AuYooUqtnx1giIjon6V5aP1sHZyVdg7WetqNjIjon67WI0gLFy50WJ6bm4u9e/diyJAh+PbbbzF06NDaNlFOZy93/GkolCyeXWzDETRzK8T9oQeQXuyJgzl6XCr2Qk6pBiL+HhnyVhYjz80bqz0G4oKmpV0MUSmDpaU7rP5usHoqAaUMpxCIx/E5/IVsRIacQe+OezD0YvntKYmIqOnx8g+Af3AIss6n1Wm7ZlMp8jIuwyfQ+Q2KiIgam1onSBMmTKj0fqdOnTB37lxJE6TRgb74+EKmZPHKCKIVo65ssn0dqMlHoCYfAFBqlaHIrAIAaOQmqOUWJFluxQXT38mRKBdgjvCCpaUHIHO8linLxw9ZPn7Y2akbPiopxgsXs/BgkF+druMiIqJ/ntgBd+LnJR9WXVFi5tLSOm+TiKghkOyg2JsNGTKkWqcd10SMVoN4neNzBZzROycZbYovOLynklnhrSqBt6oEavm16QgqmG33rd4qGHs2g6WVtsLk6GZX3TR44cQF3HfgNDJLTc6/ABERNVjRvfvB0y+gztuVK1V13iYRUUPgsgTJaDRCpZL+m+/sti2gkHDQRW01YubpD2r0TAmUAACLrwqlXf0ATe0G4rbnFGD4/lPIMDJJIiJqqlRuGgx8/F912qZcqYSuWfM6bZOIqKFwWYKUmJiITp06SR63o6c7ngmR7pv68+eWIqroXI2eOWFtCau7AqY4P0Du3Ed4qsiI8YfOwOzqfcyJiOgfq3WnLuh298g6a88/uHW9bDFORNQQ1Pq747PPPuuwPC8vD/v27cOJEyewffv2WnesMs+31uN8SSlWXc5xKs6Dl9bi3+e/qvFzB8UwmNp7Awpp8suD+cV4N+0KngvVSxKPiIgantvHTYRotSJ53WqXt9Wmyy0ub4OIqKGqdYK0f//Nh59e4+XlhQEDBmD16tUIDQ2tdccqIwgC3o1qheYqJT5Iy4C1hlPu5KIZU9I+x/+lLatx21dFLXbqu0L0Udf42cosTLuCsYG+CHLjnHAioqaq9/iHERQRhS2L/4eivFyXtCGTK9Ch/yCXxCYiagxqPQSydetWh9fatWvx5ptvuiw5KiMIAma0CcLzJ0U0yzVX/cB1HfOP44d9T9UqOQKAbyy9UdJKV6tnK2MSRXx+KVvyuERE1LC0vaUHJr7zIXqMvh9uXl6Sx++YMAhaH1/J47qCaBVRcjoXRSkZKDmdC9HF09EnTpyIe+65p1z5tm3bIAgCcnNzAQAWiwULFixAhw4d4ObmBh8fH9xxxx3YuXOn3XMWiwXz5s1DVFQUNBoNfH19ER8fj8WLF9u1KQgCBEGASqVCeHg4Zs2aBbPZ7LBtABBFEZ988gni4+Oh1Wrh7e2Nrl27YuHChSgqKgIAzJw50xb3xisqKkraD42oEWrwE5B9zxTiif2lSAtQICVUjQv+ClzVyoDr22cLohVtis+ja95hjLv8A24xpNa6rVzRAx+q74Woc80oz8rLV/FCWKBLYhMRUcOh0Xri1hFjET98NNa9Mw+n/vxdkri6Zs3Ra9xESWK5WnFqFnLXnYYl7+/tyOU6FbyHtoGmvX+99UsURYwZMwZbtmzB/Pnz0b9/fxgMBnzwwQfo06cPvvnmG1uS9eqrr+Ljjz/GokWL0LVrVxgMBiQnJyMnx36JwODBg7F06VIYjUb8+OOPePrpp6FUKjFt2jSHfXjggQewevVqvPjii1i0aBECAgJw4MABLFy4EK1bt7a1HxMTgy1bttg9q+DaM6IqNfj/S8xmKwAgJNOMkMxrf20xKoAitQwaWQ4e9nkKPqVFkrQ10zQBWf5+ksRy5JLRhMtGE/RqpcvaICKihkMmk+POfz2Hb2bPQPqp407FUmk0GDLlv1C5aSTqnesUp2Yh+4uj5coteaXI/uIo/Ma3q7ckadWqVfj222+RlJRkd9bjJ598guzsbDz66KMYMGAAPDw8kJSUhKeeegqjRo2y1YuNjS0XU61WQ6+/tg75ySefxPfff4+kpCSHCdKqVauwYsUKrFmzBnfffbetvHXr1hg2bBgMBoOtTKFQ2OISUfW5bBe7uqJQysuVqc2AT6EVbvk6HPNvU+M1So58Zh6ANdbbIHq5Nnk5lC9NMkdERI2D0s0NI2bMQouo6FrHcNN6YsT0WdC3aSthz1xDtIrIXXe60jq56864fLpdRb788ktERETYJUdlnnvuOWRnZ2Pz5s0AAL1ej19++QWZmTU75F6j0aC0goN8V6xYgcjISLvkqIwgCNDppF8GQNTUNPgEyTfQvdL7Jy7fi4MxXjDLa58lJZrvwCvmiQAAUenaj+yqyeLS+ERE1PCo3T0w+uW56Dl6fI235w7r3A0T5i9CUEQ7F/VOWsazeXbT6hyx5BlhPJvnkvbXr18PrVZrd91xxx22+ydOnEC7do4/y7LyEydOAADeeecdZGZmQq/Xo2PHjpg0aRI2bNhQYduiKGLLli3YtGkT+vXr57DOyZMnERkZWa13OXToULl3mTRpUrWeJWrKGvwUu4BWXjh/tOLtvgvSO+JSx1Yo7HIR7U4UwDe3+oeylqhkWOffEWsMnaHNK0SBSStFlyslk/AQXCIiajxkcjm6jxiDyJ63I2Xjehze/jOMhYUO6wqCDKGdu6LTwLsQ2qlLHffUOdb8ypOjmtarqb59++LDDz+0K9uzZw/Gjx9v+1oUqzd6FR0djdTUVOzduxc7d+7E9u3bMXToUEycONFuo4aypMxkMsFqtWLcuHGYOXOmw5jVbRsAIiMjkZSUZFfm5YKNP4gamwafIIXG+mPfprSKK4gypP85Eaq+b2B/By/45pjQ8lIJ/K6WVjh8VuAux4UgN1xu7gZf+QVMwccAgOxiH6ySj8NvcPxXHSk0V3H9ERERVcxHH4S+Ex9Hr/sfQlbaWVw+cwr52ZkQRRFuHlo0ax2G5mHh0Hg2zF+EZZ7V2wipuvVqysPDA+Hh4XZlFy5csP1zREQEjh4tvz4KgK08IiLCViaTydCtWzd069YNU6ZMwRdffIEHHngAM2bMsO34W5aUqVQqBAUFVbqRQkREBI4dO1atdynbFY+IaqbBJ0j6MB0CWnki86/8CuuUZLdB1pEhCGi/Dld9Vbjqq4LcIkJbYIa20Ay5RYQoCCjSyJGvVaBU7Th18tPkoJPhAH5Tuy5B6uD5z188S0RE9U+hVEIfHgF9eETVlRsQdagOcp2q0ml2cp0a6tD6WWszZswYjBs3DuvWrSu3Duntt9+Gn58fBgwYUOHz0dHX1pIV3jD65ygpq8i4ceMwZswYrF27ttw6JFEUYTAYuA6JyEkNfg0SANwytOozl7KPDMPV439/w7LIBeTplLgYpMFfwe4431KDbD9VhckRAOCqG7p/chqC1SpFt8uJ9HCDj7LB56xERES1JsgEeA9tU2kd76FhEOppTvqYMWMwfPhwTJgwAYmJiTh37hwOHjyIJ554AklJSVi8eDE8PDwAACNHjsSCBQuwZ88epKWlYdu2bXj66acRERFR6/OIRo8ejfvuuw9jx47F66+/juTkZKSlpWH9+vVISEjA1q1bbXXNZjMuX75sd125ckWSz4GoMWsUCVLrDv6IjK96G8uMA6OR/sdEWEprPkpjON8FmUkT0OJMNrocO1KbblZpfKDrthAnIiJqKDTt/eE3vh3kN507KNep63WLb+DaTnGrVq3C9OnTsWDBAkRGRqJXr162BOjGg2YHDRpkG2mKiIjAhAkTEBUVhZ9++qnW5xEJgoAvv/wS77zzDtasWYPevXujY8eOmDlzJu6++24MGjTIVvfw4cMIDAy0u0JCQpz9CIgaPUGsyWo/iZUNA+fl5Tm9aLC02Iw1C/ZXOtWujEKTA7/o9dC12gOZ0lhp3eKsMGQfH4SCi50hWExQmwxIba3HV709nervzXQKOf68NRpeivLblhMREf2TSPnzuzKiVYTxbB6s+aWQeaqgDtXV28gRETUdjSZBAoCSQhM+m7YT5tLqTYGTKYqhDToAN99zUOsuQKYsAaxylBb6w5gTgsKMKBhzWzl89rtbPXCkldr2tWC1wP9qBvSZF+FVkAdBtMKo0iDDX4/LAS1gVFc+avVuVCvcF+hb/ZclIiKqJ3WVIBER1YdGteDFzUMJjZcK+Vkl1apvNWtg+Ks7DH91r3Fbd+wtwgU/BUQxH50O/4EOR/fCo8TxdqtWQcCZVpHY3z4e54LLH9J3V4COyRERERER0T9Ao0qQAEAur5tlVRqjFRPXbYUsfyeUlsrPVpKJIsLTjiE87RhOt4rAT7ffgwLttb+49fHxxAftOB+YiIiIiOifoFFs0nAjT1911ZWcJIommApWQ527rcrk6GZt/jqBid+8j+D0c3iiZQCWdwyFWx0ldUREREREVLlG95t5QIhr50KLohmmgjWwmis5nLYKGmMxxm38HE+I+VDJGt2/AiIiIiKiBqvR/XbeMtLHpfHNxbtgNZ93Oo7VaMT6hW/AWFQkQa+IiIiIiEgKjS9BivKBLqDm5xxVh9WcDotxr2Tx8rMz8evniyWLR0REREREzml0CZIgCOg0wPHW3M4yF+8GIO2u6Klbt8CQmSFpTCIiIiIiqp1GlyABQEyvIASG6ySNabUWAzBD6o3/RNGKA1s2SBqTiIiIiIhqp1EmSIIgoP+EaGg8lZLFlMk0UHmOgtp7EhTu/SHIpDu36HTyHsliERERUe1MnDgRgiBAEASoVCqEh4dj1qxZMJvNtjqffvopYmNjodVq4e3tjbi4OMydOxcA8Mgjj6BDhw4oLS21i/vjjz9CpVJh3759AID9+/dj1KhRaN68Odzc3NC2bVs89thjOHHiBADg3LlzEAQBKSkp5frYp08fTJkypcJ3WLZsme0dbrwWL/57Sv/vv/8OuVyOu+66y2GM0tJSvPnmm4iNjYW7uzv8/f3Rs2dPLF26FCaTyfZZ3XPPPXaf3Y1f36x169ZYuHAhtm3b5rB/N16zZ89GYGAgrl69ahfjwIEDUKvVWL9+fYXtEEmhUSZIAKAL0GDo5E6SJkkAIAgqKNSxUHk9AIXbrZDiI7x66QJMxuodbktERNRUWK1WnD17FocOHcLZs2dhtVpd3ubgwYORnp6OkydP4rnnnsPMmTMxf/58AMCSJUswZcoUTJ48GSkpKdi5cyemTp2KgoICAMCCBQuQn5+PV155xRYvNzcXjz32GF566SV07twZ69evR/fu3WE0GrFixQocPXoUX3zxBXQ6HV566SVJ3sHLywvp6el21/3332+7n5iYiH//+9/Yvn07Ll26ZPdsaWkpBg0ahHnz5uHxxx/Hrl278Mcff+Dpp5/G+++/j8OHDzvVtx49etj1a/To0bbPvOx64YUXEBwcjKefftr2nMlkwoQJEzB+/HgMGTLEqT4QVaXRHRR7o4BgT4z8b1f8svwYLh7PkTS2IMih0NwKmTIEpQXfA6Kx1rFEqxU56ZfQrHWYhD0kIiJquI4cOYKNGzfCYDDYyry8vDB48GBER0e7rF21Wg29Xg8AePLJJ/H9998jKSkJ06ZNQ1JSEkaPHo1HHnnEVj8mJsauf0uXLsWgQYNwzz33ID4+HlOmTEGLFi0wbdo0FBUV4aGHHsKdd96J77//3vZcaGgo4uPjkZubK8k7CIJge4ebFRQUYOXKlUhOTsbly5exbNkyTJ8+3XZ/4cKF2L59O5KTkxEXF2crDwsLw6hRo8qNjtWUSqWy65tGo4HRaCzX3+XLlyMuLg7ffvstRo4ciddeew25ublYsGCBU+0TVUejTpAA4IzlONJ6b8efLVNwznAOJmspFFYVfIr0CMvuiIisWyBAqHV8mSIIKu29KM3/BtfWKNWO2clvOERERI3FkSNHsGrVqnLlBoMBq1atwujRo12aJN1Io9EgOzsbAKDX6/Hrr78iLS0NISEhDuv37dsXTz31FCZMmIDZs2dj1apV2LdvHxQKBdatW4esrCxMnTrV4bPe3t6ueg2bVatWISoqCpGRkRg/fjymTJmCadOmQRCu/S60YsUKJCQk2CVHZZRKJZRKaWfmVCQqKgpz587Fk08+CU9PT8ydOxcbN26El5drz7skAhrxFLuf037GqHWj8MCGB7D40GIcKEpGniILRSoDDG5ZuOx5BsF57ZxKjsrIFIFQaG53KoZCpXK6H0RERA2d1WrFxo0bK62zceNGl0+3E0URW7ZswaZNm9CvXz8AwCuvvAJvb2+0bt0akZGRmDhxIlatWlWuL2VrksaMGYPXX38dUVFRAICTJ08CgO3rqvTo0QNardbu2rFjR5XP5eXl2T1z4+hMYmIixo8fD+DadMK8vDz8+uuvtvsnT56sdv9c7ZlnnkH79u1x55134sknn0Tfvn3ru0vURDS6EaQ8Yx5m756NTec2VVqv57kRcDdJ91cIuToWVtMJWM0Xav6wIEDjJe2ue0RERA1RWlqa3bQ6RwwGA9LS0hAaGip5++vXr4dWq4XJZILVasW4ceMwc+ZMAEBgYCB+//13pKamYvv27di1axcmTJiAxYsXY+PGjZDJrv3dWaPR4Pnnn8d//vMfPPPMM7bYolizo0JWrlyJdu3a2ZXduJaoIp6enrYNIQDY+nX8+HH88ccftul9CoUC9913HxITE9GnT59a9dGVBEHAjBkzsG3bNrz44ov13R1qQhpVgpRVnIVHNz2K03mnK63nWeKHtlmdJW1bEATI3eJhLahFgiSK+HLGsxjw+L8QFtdN0n4RERE1JGUbHkhVr6b69u2LDz/8ECqVCkFBQVAoyv+q1L59e7Rv3x5PPfUUJk2ahF69euHXX3+1G+FQKBSQy+W2qWsAEBERAQA4duwYbr311ir7EhwcjPDwcLsyjUZT5XMymazcc8C10SOz2YygoCBbmSiKUKvVWLRoEXQ6HSIiInDs2LEq26grZZ+/o38PRK7SaKbYlZhLMGnzpCqTIwCIudITggteXaZoBUHmXatnC65m4/t5r2LP9+XnXBMRETUVWq1W0no15eHhgfDwcLRq1apav5SXrYUqLCyssu7AgQPh7++PN9980+F9qTZpcMRsNmP58uV4++23kZKSYrsOHDiAoKAgfPXVVwCAcePGYcuWLdi/f3+5GCaTqVrvSdTQNZp0/P397+N4zvFq1W2VE1N1pVoQBAEyZSgsxvLfVKrrt6+XQ6FSoctd90jXMSIiogYiJCQEXl5elU6z8/LyqnCTBFd68sknERQUhH79+qFly5ZIT0/HnDlzEBAQUK0RIQ8PDyxevBijRo3CsGHDMHnyZISHhyMrKwurVq3CX3/9ha+//tolfV+/fj1ycnLwyCOPQKezn9Y/YsQIJCYmYtKkSZgyZQp++OEH9O/fH7Nnz8Ztt90GT09PJCcn44033kBiYiI6derksI28vLxyZzf5+fkhODjYJe9E5CqNYgTp2NVj+OLoF9Wqq7Co4F3czGV9kcmbOx1j+4qluHK26pEwIiKixkYmk2Hw4MGV1hk8eLBtXU1dSkhIwO7duzFq1ChERERgxIgRcHNzw88//ww/P79qxbj77ruxa9cuKJVKjBs3DlFRURg7dizy8vIwZ84cl/U9MTERCQkJ5ZIj4FqClJycjIMHD0KtVmPz5s2YOnUqPv74Y3Tv3h3dunXDe++9h8mTJ6N9+/YVtrFt2zbExcXZXa+++qrL3onIVQSxHlfjGQwG6HQ65OXlObVt44u/vYi1p9dWq65fYQuMOuh4e00pWM2XUZr/pdNxAlq1xgNvvAehHn4AEBERVUaqn9+Vqa9zkIiIGvwUu4LSgip3rLuR3OrqV5ZLEiXzr3M4sz8ZbbrcIkk8IiKihiQ6OhpRUVFIS0tDQUEBtFotQkJC6mXkiIialgafIB3OPowSS0m165tlJhf2BnDmsNibHdj8IxMkIiJqsmQymUu28iYiqkyD/zPMkewjNaqfp8mARbC4qDeA1ZItWazzhw/BanVdX4mIiIiIyF6DT5AyijJqVN8iMyNHk+6i3gCi5YpkscylRmRfOC9ZPCIiIiIiqlyDT5BE1HyPibO+B13QE0AULbCUSrv7XO7lS5LGIyIiIiKiijX4BEmnKr9dZVWONv8dFkG6tUJlrKYzgCjtyd5WC6fYERERERHVlQafIIW51/yguCKVAYeb/yZpP0TRAnPJbkljAoDSzU3ymERERERE5FiDTpDOHzmE1PeWoxaz7PBHq/XIU2dK1pds5UmIFunilQloxd17iIiIiIjqSoNNkNIOpWD1668AmQUIyqr5KItZbsKmyCUwyouc7suJQCV2RSmdjnMzd503PP38JY9LRERERESONcgEKS/jCpLefg1mUykAoF2aZ63iXPW4hKSYRShU5tW6L0daKvFtTy3Sm7eodYyKRN7aS/KYRERERERUsQaXIImiiE0fvYvS4mJbWXCGO1pmaGoVL9vjIlbFzsNJ/+QaPVeiFJDUzQPf9fSERS4gy6cZRAi16kNFYgfeKWk8IiIiqtjEiRMhCAIEQYBSqURoaCimTp2KkpK/D6Qvu3/z9fXXXwMAtm3bBkEQkJubWy5+69atsXDhwnLlc+fOhVwux/z588vdW7ZsmV07Wq0WXbp0werVqyV7byKyp6jvDtTUqT9/x/nD5bfpvvWQL5J6pcOostY4plFZhJ/bfo5D+u2IuXwb2lyNg8LqeMpcjocM+9qosT9MjWL13/mlVa6AWaGA0myqcfuOxPRJgF+LYEliERERNUSiaEFu7p8wGjOgVjeDt3c3CILcpW0OHjwYS5cuhclkwt69ezFhwgQIgoA33njDVmfp0qUYPHiw3XPe3t61bnPJkiWYOnUqlixZgv/7v/8rd9/LywvHjx8HAOTn52Pp0qUYPXo0Dh8+jMjIyFq3S0SONbgEKWXTDw7LPYwK9E9uhp9uyYBZUfMkCQAyPNOQrsvF9wGx8Cv0gj7XArdSK0RBQJ6HDOk+cuR5VPyNWWaVZktura8f+k54TJJYREREDVFGxiacODkLRuNlW5larUdE25fRrNkgl7WrVquh1+sBAMHBwUhISMDmzZvtEiRvb29bHWf9+uuvKC4uxqxZs7B8+XLs2rULPXr0sKsjCIKtPb1ejzlz5uCtt97CwYMHmSARuUCDmmJXmJuDvxyMHpXxzfeASftvWBTNahXfpAxBbvOXYFIH4rKvAilhauyO0mBPpBuOtVRVmhw1LzAgKrP2a5nKqN09cM//vQS1u4fTsYiIiBqijIxNOJT6tF1yBABG4xUcSn0aGRmb6qQfqamp2LVrF1QqlcvaSExMxNixY6FUKjF27FgkJiZWWt9iseCzzz4DAHTu3Nll/SJqyhrUCFL6qROAWPGe3ju6JSCrWVfA2gEeed9Ak/8LBFQ95c0quKHY604UeQ0Dajl03/bUcbS9kAGZsRQnAn0hCjVfj6T19cM9//cSmoeF16oPREREDZ0oWnDi5Cw4PsNDBCDgxMnZCAhIcMl0u/Xr10Or1cJsNsNoNEImk2HRokV2dcaOHQu53L7tI0eOoFWrVravW7ZsWS52UZH9zrkGgwHffvstfv/9dwDA+PHj0atXL7z77rvQarW2enl5ebavi4uLoVQq8cknn6BNmzbOvSwROdSgEqTMtDMV3svyaYa9Ha8PScvUKPQZjyKvu+FW+CtUxSlQlKZBJv69yNIq84BZ2RpG9y4wetwGUVa7TR7KdDl6CADQJjMXWqMF67vfgnMtQnDVOwBmuQIKswn+OZlonnkRLS+nQWEx2z0f0ycBfSc8xpEjIiJq0q6tObpcSQ0RRmM6cnP/hI9Pd8nb79u3Lz788EMUFhZiwYIFUCgUGDFihF2dBQsWICEhwa4sKCjI7usdO3bA09N+l90+ffrYff3VV1+hTZs2iI2NBQB06tQJISEhWLlyJR555BFbPU9PT+zbtw/AtSRry5YtmDRpEvz8/DB06FCn3peIymtQCZKxsLDCe/vax0OU2c8YFOWeKPYagmKvIYBohcySC4gmQFDBqvCRrF+akmIM3LMDV3z8sCrhLmzqfjsKK0l0NMWFaH98H247fRBdO3dGp4F3wa9lqwrrExERNRVGY4ak9WrKw8MD4eHXZnIsWbIEsbGxSExMtEtY9Hq9rU5FQkNDy23coFDY/9qVmJiIw4cP25VbrVYsWbLErj2ZTGbXXseOHfHTTz/hjTfeYIJE5AINKkESZI6XTJllchxp26mqh2FV+ErfKQBDt2/B5vjb8PHwcSh2q3okqljjgT879cLJrn0Q2rYF/PSu6RcREVFDo1ZXbx1xdes5QyaTYfr06Xj22Wcxbtw4aDTOzTa50aFDh5CcnIxt27bB1/fv3wOuXr2KPn364NixY4iKiqrweblcjuIbjjwhIuk0qE0avPwDHJZn+ulhUqnruDfXtLiSjkxfPywc+0i1kqMb5ZotmHz0L0w9fh5iJWuriIiImgpv725Qq/VAhWcLClCrA+Ht3a1O+jNq1CjI5XJ88MEHtrLc3FxcvnzZ7iqsZJaLI4mJibjllltw++23o3379rbr9ttvR7du3ew2axBF0dbO2bNn8cknn2DTpk24++67JXtPIvpbg0qQmoe1dVh+JSDIYXlVBGshlCWH4VawFW75W6Au/A3y0jRArN523W4lJWiZeRlbu/aounIlll/KxosnLzoVg4iIqDEQBDki2r5c9tXNdwEAEW1fcvl5SGUUCgX+9a9/4c0337QlQQ899BACAwPtrvfff7/aMUtLS/HFF1+UW9tUZsSIEVi+fDlMpmsbTRkMBls77dq1w9tvv41Zs2ZhxowZzr8gEZUjiPU4dGEwGKDT6ZCXlwcvL68q65tNJnz0xPhya5F2du2HXV37Va9RsRTqwt3QFPwMRelZCA52yREFJYyarij2TIBZHeEwjFtxMQbv/hVr+g52eL82lrUPxeAAnWTxiIiIXKGmP79rw/E5SIGIaPuSS89BIiJqUGuQFEolYm7vj30bkmr1vLLkMDyzF0Nuyaq0niCa4Fb0O9yKfodR0wX5vg9BlN+QuIgiSjQaSZMjAJh64jx6+Gjhpaibv4oRERH9UzVrNggBAQnXd7XLgFrdDN7e3eps5IiImq4GNcUOAOIGD4VcqbQrcy8uqPI5j9yV0GW8UWVydDN18V74pv8XypJjfxfW4oyj6sgoNWNl+lWXxCYiImpoBEEOH5/u0OuHwcenO5MjIqoTDS5B8tYH4tYRY+3KmmdeqvQZj5wv4W5Y73A6XXXIrAXQZc6HouR4rZ6vic8u1SyBIyIiIiIi6TS4BAkAut09AsHRHWxfB2RfhtJU6rCuuvB3uOdvcLpNQSyF35UPoSk2QG5x3bKtU0VGnC9x/C5ERERERORaDWoNUhmZTI67/+8lfP/GTFw8dgRKixlRpw7hULsudvUESx60OcurFVOEHGZlMCxKPSAoIViNUBmvoF16EEJyYhBQGAxtqTcAM0TkIEcrQ7qPAsdaKnGspQpWmXTT7g7mFyHYTSVZPCIiIiIiqp4GmSABgNrdHSNmzMbOr5dj34/rEJf6Ow5FxQHC34Ni7oYfIbNWvD5JhIBSTSeUaPuj1C0aEJTl6uxuLiLnUim6njRCm20GcG2TUd8CK3wLShFzvhT5bkXYHqPBvjZqSdYnnSkyOh2DiIiIiIhqrsEmSACgVKnR58HH0Db+NuxZ/TUOHvkTKTHx126KpXAr3F7hs2ZlMPL9HodZ1brSNkxKAakhaqSGqNH2Uinu+rMQniX2U+w8S0TctbcI7S6UYk28FoUa52YumnhoLBERERFRvWiQa5Bu1iKyHe6d9iqWjBiKIOu1Q9WUJccqHD0q1vZHjn5WlcnRzU4GqfDRHTqcbu44rwy7YsaEXwzwLLLWKO7NtPJG8a+FiIiIiKjBaVS/iQcFBmFNj45ooVZCWXrGYZ0i7UAU+E4EhNoNnpWoZFjZyxOn9eWn4wGAX4EVY7fnO7WRQzsPTa2fJSIiIiKi2mtUCRIAtNKosa5zWzTH5XL3StURKPS53+k2LHIB393qgbwKptI1z7Ogd2pxrWILADp4MkEiIiIiIqoPjS5BAoAgNxW6eNqPEImCCvm+j9tt4uAMo0qG9d08Krx/6/ES+OZbahz3dh9PeCsb9NIwIiKiBikzMxNPPvkkWrVqBbVaDb1ej0GDBmHnzp22Oq1bt8bChQttX4uiiOeffx5eXl7Ytm2bwzo3f32jc+fOQRAEpKSkOLy/bNkyCIJQ7nJzc7PVmThxoq1cqVSiefPmGDBgAJYsWQKrtfJp/zNnzoQgCJg0aZJdeUpKCgRBwLlz5wAA27ZtgyAIyM3NLRfj5ve7sZ9eXl7o1q0b1q5da/eMxWLBvHnzEBUVBY1GA19fX8THx2Px4sV273XPPfeUe8958+bZxVqzZg2EmzbJEkURn376KW699VZ4eXlBq9UiJiYGzzzzDE6dOlXh51H27+Pma/z48bY6xcXF8PX1hb+/P4xGxxtrfffdd+jTpw90Oh20Wi06duyIWbNm4erVqwCu/Xv19va21b/565vd+Fk46t+NV9++faFUKvHbb7/ZxSgsLERYWBief/75CtuhaxplggQAKrn9NtnF2j6wKptL2saZQCXONnOczMhEoMupkhrHnNjCz9luERERNQoWUcTOnHx8fyUHO3PyYXHxJkYjRozA/v378dlnn+HEiRNISkpCnz59kJ2d7bh/FgseeeQRLF++HFu3bkWfPn1c0i8vLy+kp6fbXWlpaXZ1Bg8ejPT0dJw7dw4bNmxA37598cwzz2DIkCEwm82Vxndzc0NiYiJOnjwpWZ+XLl2K9PR0JCcno2fPnhg5ciQOHTpku//qq69iwYIFmD17No4cOYKtW7fi8ccfd5iA3dzXN954Azk5ORXWEUUR48aNw+TJk3HnnXfip59+wpEjR5CYmAg3NzfMmTOnyv5v2bLF7vP+4IMPbPe+++47xMTEICoqCmvWrCn37IwZM3DfffehW7du2LBhA1JTU/H222/jwIED+Pzzz6tsuyo39mvhwoXl/vtYt24d/v3vf2PixIkoLCy0PTd16lRoNJpqvX9T12iHKlp5trL9swigRNvfJe0kh7shNMPxZhCx50qxuZN7tbf+7ublgUH+Oim7R0RE1CD9kJmLF09eRLrRZCsLVCsxp20L3BXgLXl7ubm52LFjB7Zt24bevXsDAEJCQnDLLbc4rG80GjF27FgkJydjx44diIyMlLxPZQRBgF6vr7RO2YgXALRo0QKdO3dG9+7d0b9/fyxbtgyPPvpohc9GRkaiWbNmmDFjBlatWiVJn729vaHX66HX6zF79my8++672Lp1Kzp06AAASEpKwlNPPYVRo0bZnomNja0ybkJCAk6dOoW5c+fizTffdFhn5cqV+Prrr7F27VoMGzbMVt6qVSt0794dYjUSbT8/vwo/88TERIwfPx6iKCIxMRH33Xef7d4ff/yB119/HQsXLsQzzzxjK2/dujUGDBhQZQJYHTf2S6fTOfzv4/XXX8fGjRvxwgsvYNGiRdi6dSsWL16MXbt22Y0+kmONdgQp2i/a9s8WZTAsyiCXtHMiSAlzBZ+iplSEf371drTTyAQsbBcMmQTnKBERETVkP2Tm4tHUc3bJEQBcNprwaOo5/JCZK3mbWq0WWq0Wa9asqXDaVJmCggLcddddOHLkCHbu3OnS5MgZ/fr1Q2xsLFavXl1l3Xnz5uG7775DcnKypH0wm81ITEwEAKhUf8/u0ev1+OWXX5CZmVmjeHK5HK+//jref/99XLhwwWGdr776CpGRkXbJ0Y1uno5XE6dPn8bvv/+O0aNHY/To0dixY4fdaN6KFSug1Wrx1FNPOXy+sml0UnJzc8Py5cvxySefYO3atXj44Ycxffp0dOnSpU7ab+gabYIUHxgPtVwNADCpQl3WjlUuIMNbXuF9/dXKh7UBQC4Ai6JD0MadGT0RETVtFlHEiycvwtHf+MvKXjp5UfLpdgqFAsuWLcNnn30Gb29v9OzZE9OnT8fBgwfL1Z09ezZSUlKwY8cOBAcHS9oPR/Ly8mwJXNl1xx13VOvZqKgo2zqiynTu3BmjR4/GCy+84GRvrxk7diy0Wi3UajX+85//oHXr1hg9erTt/jvvvIPMzEzo9Xp07NgRkyZNwoYNG6oVe/jw4ejUqRNeeeUVh/dPnDhRLmmdMmWK7bNr2bJllW306NHD7vPev38/AGDJkiW444474OPjA19fXwwaNAhLly61PXfy5EmEhYVBqXS823Fd6tq1K6ZNm4Z7770Xfn5+mDFjRn13qcFotAmSTq3DoNaDAFwbQXKlDF3FCZK7sfJv4B5yGT6Nae2S6QJEREQNze7cgnIjRzcSAVwymrA71/H0dmeMGDECly5dQlJSEgYPHoxt27ahc+fOWLZsmV29gQMHorCwEK+//rrkfXDE09MTKSkpdteNmxlURhTFao+YzJkzBzt27MBPP/3kTHcBAAsWLEBKSgo2bNiA6OhoLF68GL6+vrb70dHRSE1Nxe7du/Hwww8jIyMDQ4cOrXQq4I3eeOMNfPbZZzh69Gi16s+YMQMpKSl4+eWXUVBQ9X87K1eutPu8o6OjYbFY8Nlnn9lt2DB+/HgsW7bMthlGdabv1aWXXnoJVqsV//3vf6FQNNqVNZJrtAkSADwU8xAUMgVEmdql7ZQqKvnGU8mtXj5abO0WiTuZHBEREQEAMkqrnnlRk3o15ebmhgEDBuCll17Crl27MHHixHIjFf3798fatWvx0Ucf2a0zcRWZTIbw8HC7q0WLFtV69ujRowgNrd5MmjZt2uCxxx7Df//733K/6Ht5eQG4Npp1s9zcXOh09muo9Xo9wsPDMXDgQCxduhT33XcfMjIyyr1Xt27dMGXKFKxevRrLli1DYmIizp49W2Vfb7/9dgwaNAjTpk0rd69t27Y4fvy4XVlAQADCw8PRrFmzKmMDQHBwsN3nrVarsWnTJly8eBH33XcfFAoFFAoFxowZg7S0NPz8888AgIiICJw5cwYmU8VJfl0qS4qYHNVMo06Qwn3C8XjHxwGx5ttt14RYcgLG/JUoyf0YJbn/Q0nuJyjN/w6m4p2QlV6xq6uRyXB3M298HxeObzqFo5XGtckbERFRQ9JMVb1f5Kpbz1nR0dF2O4GVGThwINatW4dPP/0UkydPrpO+1NQvv/yCQ4cOYcSIEdV+5uWXX8aJEyfw9ddf25W3bdsWMpkMe/futSs/c+YM8vLyEBERUWHMW265BV26dMFrr71WadvR0dfWjzv6vB2ZN28e1q1bh99//92ufOzYsTh+/Hi5rcWdlZiYiDFjxpQbzRszZoxtndW4ceNQUFCA//3vfw5jSLFJA7leo08nH+vwGL7N/AiHXdiGLjsFovmiXZnVXACY09Drtz3od74NAoaNRqdOnRHh4QY5N2IgIiJyqLu3FoFqJS4bTQ7XIQm4tptdd2+tpO1mZ2dj1KhRePjhh9GxY0d4enoiOTkZb775Ju6++26HzyQkJGD9+vUYOnQorFYrFi1aVGH8ixcvljvrKCQkxPbPN494AEBMTAyAa9O2Ll++XO5+s2bNIJNd+1u30WjE5cuXYbFYcOXKFWzcuBFz587FkCFD8OCDD1b5/mWaN2+OZ599FvPnz7cr9/T0xKOPPornnnsOCoUCHTp0wPnz5/HCCy+ge/fu6NGjR6Vxp0yZguHDh2Pq1Klo0aIFRo4ciZ49e6JHjx7Q6/U4e/Yspk2bhoiICERFRVWrrx06dMD999+P9957z658zJgxWL16NcaMGYNp06Zh0KBBaN68OdLS0rBy5UrI5RUvjahIZmYm1q1bh6SkJLRv397u3oMPPojhw4fj6tWriI+Px9SpU/Hcc8/h4sWLGD58OIKCgnDq1Cl89NFHuO222yocdbRYLOX+G1Gr1WjXrl2N+0vOafQJkkKmwEtxYzHm4HmXtaHPvFjpfVPaaVxaNA8BCXcg/MFHIFdx1IiIiMgRuSBgTtsWeDT1HATALkkq+/Pi7LYtJP9jo1arRXx8PBYsWIDTp0/DZDIhODgYjz32GKZPn17hc/369cMPP/yAIUOGQBTFCpOkt956C2+99ZZd2eeff47bbrsNwLVf6m92/vy1310MBgMCAwPL3U9PT7dt77xx40YEBgZCoVDAx8cHsbGxeO+99zBhwgRbElVdzz//PD788EOUlNif5/juu+9i3rx5eOGFF5CWlga9Xo8BAwbgtddeq3Kd0+DBgxEaGorXXnsN//vf/zBo0CB89dVXmDt3LvLy8qDX69GvXz/MnDmzRtPBZs2ahZUrV9qVCYKAlStX4tNPP8XSpUvx5ptvwmQyoWXLlujfvz/eeeed6n8Y1y1fvhweHh7o37/8sTH9+/eHRqPBF198gcmTJ+ONN95Aly5d8MEHH+Cjjz6C1WpFmzZtMHLkSEyYMKHCNgoKChAXF2dX1qZNm0oPtiXXEMR6XE1mMBig0+mQl5dnm9vqCiUWKzrtOoxcs/RT7fQZF/DA6o+qXb9ldHvc+8JMKLkHPRERNVB18fPb0TlIQWolZrvoHCQiojKNfgQJANzkMtyn98XHF2q21351dDr8R43qXziSinUL5mL4f2c6tQ8/ERFRY3ZXgDcG++uwO7cAGaVmNFMp0N1by2nqRORyjXqThjImYwmGlubBTazeoa3VpTPkIOpU+fMRqnI2ZS8ObK7eXv9ERERNlVwQ0NPHE8Ob+6CnjyeTIyKqE416BOni8aNI2bQeJ/fshMVsRs/23fHzbUOkCS5aMXjbaigttdtmdPuKpYjo3hPuXrqqKxMRERERUZ1olAlScb4BPy/5CMd3bbcrj0vdjb+CQnEyLMbpNm7d9ytaXap6n/6KmEqKcejnTYgfPrrqykREREREVCca3RS7jHNn8NnzT5dLjoBru98M2bIK4WePONVGt5QduO3Pn52KAQCHftnkdAwiIiIiIpJOo0qQMv86h29mTUdhbk6FdRRWC+7Z9BX67PoRClNpjeK7FxVg2KYv0We3NIlNXsYV5F/NkiQWERERERE5r9FMsTOVGrHunbkoKSyosq4AEd0O7kL4uWNIju2JI21jUaqqeNtt96J8dDy6F10O7YJ7SZGU3caVM6fh6esvaUwiIiIiIqqdRpMg7Vz5BXLSKz+w9WY+hqsYsGMdeu/ehAv6EFwJaIGrOj9Y5AooLSYkdOsGt9R9KN34HeRWaXfAK1OYc9UlcYmIiIiIqOYaRYJUZMhDysZ1tX5eZSpF2PmTCDt/0q48JOsMVJ4iTrooOQKAejynl4iIiIiIbtIoEqRDP2+CxVy77bYrk3ZoP3yjcgH4SB67jMbTNSeQExERERFRzTWKTRpOJe92UWQBVrNrP6JmoWEujU9ERERERNXX4BMkq8WCrLRzLotvKXXdqd0aTy94Nw90WXwiIiIiIqqZBp8g5V65DHMNt+uuCVOBCh6BhS6JHd27PwTBdQkYERERERHVTINPkMylRpfGFy0CAmIqPleptgSZDJ0G3Cl5XCIiIiIiqr0GnyApVCqXxhfkInRh+dC2kHYUqevQe+Gt5/Q6IiIiIqJ/kgafIOmaNYdc4brN+ASFFYIAtOp9CTKVRZKY/sEh6DHqfkliERERERGRdBp8giRXKOEXHOKy+MUZGuSc9oTK04ywO85DpnQuSdI11+Peaa9CoVRK1EMiIiIiIpJKg0+QAKBNl1tcGF3A+W1BMBqU0OqLET70L6i8arcphEdgIUa8OB2efv4S95GIiIiIiKTQKBKkjv0HQyaXuyy+1SzDX9uurRdyDyhB1Mgz8O+QDcjEaj0vyuWQh2kR1D8XVvlFl/WTiIiIiIic0ygSJK2vHzr0G+jSNgrTPZB/yR0AYDRrkeUeh/zwOJQ0awmzuydEmX2CZlUoYdbqUBzYGgXhschVRyFl/13Y88cBl/aTiIiIiIhqz3W7G9Sx2+9/CGdT9sKQmeGyNrIP+0DwdMOhQ/1hNrsBcsDkp4fJTw8AEMwmQBQhymSAvPxHa7Uq8MeeLJhK12LYsGE8A4mIiIiI6B+mUYwgAYBK444hz7wAucJ1mx/kpWlx6FC/a8mRA6JCCVGpcpgc3Wj//v3YvHmzK7pIREREREROaDQJEgAEto1E1G29XRZftMggXMmTJNauXbtw9uxZSWIREREREZE0GlWCBABmo9Gl8dUZF6AwXJUkVlJSEqxWqySxiIiIiIjIeY0vQTKZXBpfAOB26RyEUucTsZycHBw/ftz5ThERERERkSQaXYKkUKlc3oYgWuGWLs30uL1790oSh4iIiIiInNfoEiS/lsF10o6iqADyQoPTcc6fPw9RrN55SkRERERE5FqNLkFqHhZeZ20pczKdjmE0GpGdnS1Bb4iIiIiIyFmNLkEKju4AtbtHnbSlKMgFJBj9yc/Pd74zRERERETktEaXICnVboju3a9O2hJEETJjsdNxOMWOiIiIiOifodElSADQdci9UGnc66QtmbHE6RgajUaCnhARERERkbMaZYLk5R+A3g88XDeNic6dYySXyxEQECBRZ4iIiIiIyBmNMkECgI79ByOmT4LrGxIEpx7X6/VQKBQSdYaIiIiIiJzRaBMkABj0xGTowyNc2oZV7dz0uNjYWIl6QkREREREzmrUCZIgk6HnfQ+4LL4oCLCq3Wr9vFqtZoJERERERPQP0qgTJABoERUNNw+tS2KbPXSAUPuPMCEhAWq1WsIeERERERGRMxp9gqRUqRHTp79LYpt8ar+5QlhYGLp27Sphb4iIiIiIyFmNPkECgC53DZd822+LxgMWD69aPRsYGIjRo0dDcHKDByIiIiIiklaTSJA8/fzRe7x0234LogiLX4ta7WAXGRmJCRMmwM2t9muXiIiIiIjINZrM/tIdEwbj4vEjOLL9F+cCiSI6ns+A74lL2NelMy60bFmtREmr1WLAgAHclIGIiIiI6B+sySRIADDoyWcgyGQ4vG1LrZ4XRBHtz2eiRU4BAKDnzl0o0HrgdJs2uNqlC7KNRlgsFlt9rVaLFi1aoEOHDmjXrh3kcrkk70FERERERK7RpBIkmUyOwU9OQUj7WPyy7BOUFORX+1nPYiM6ns+ArrjUrlxbUIi+cZ3RfOpUmM1m5Ofnw2q1ws3NDR4eHlK/AhERERERuVCTSpDKtOvVFyGxnXFw8wYc2JCEgnxDhXV1hSUIyTYgKCe//IItQYDfY4+h2bP/AQAoFAr4+Pi4ruNERERERORSgiiKYn01bjAYoNPpkJeXBy+v2u0I5yyr1YKMgwdw4r13cfXMKYgCILeK8Cwpha7ICI3J7PA5ZYsWCHxtDjy6d6/jHhMREdWvf8LPbyIiV2nyCdKNivbtQ86XXyF/82aIRmO5+6IKEPqEQTmwA1Qx4ZCp3OHuHgovz/ZQKDzrvsNERET14J/285uISEpNcopdRdw7d4Z7584QzWYYT55EyfHjsBQVIl9zGtk+B5BrPQTg2LXr7I1PCtDpuqBli/vRrNlgyGSq+nkBIiIiIiJyCkeQKlFUdA5Hjr6AvLzkaj/j7h6O6Og3ofPidt5ERNQ4/dN/fhMROaNJHBRbG1cyNmDPH3fVKDkCgKKiU9i7dxTS/lrsop4REREREZGrcIqdA1cyNuDw4WcgipaqKzsgihacOjUXomhB65AnJO4dERERERG5CkeQblJUdBZHjjxf6+ToRqdPz8fVq7sk6BUREREREdUFJkg3EEUrjhx9AVZriVQRcfTYNJjNhRLFIyIiIiIiV2KCdIPs7G3Iy9sracySkgu4dGmlpDGJiIiIiMg1mCDd4MLFL1wS9+KlL1GPmwUSEREREVE1MUG6zmIpQnb2DpfELio6i4LC4y6JTURERERE0mGCdF1+/hEAVtfFN6S6LDYREREREUmDCdJ1BYUnXBq/0MXxiYiIiIjIeUyQrrNail0a32J1bXwiIiIiInIeE6TrLCa5S+MLgtKl8YmIiIiIyHlMkAAc3nERO78ucmkbHu5hLo1PRERERETOU9R3B+qTqdSCnz5NxblD2ZCpghHowrY8Pdu7MDoREREREUmhyY4gmU0W/LDoAM4dygYAWEs9UJwd6pK2VCp/eHrGuCQ2ERERERFJp8kmSDu/OYWLJ3LtynJO9XFJW0GBoyGTcQ0SEREREdE/XZNMkC4cu4rUHRfLleef74bS/GaStqVQeKFlywcljUlERERERK7RJBOk378/DYjly0WrEul/ToRoFSRrq23bGVCrAySLR0RERERErtPkEqSMNAMy0vIrvF+c1RZZh++WpK1A/b0IChwpSSwiIiIiInK9JpcgndqbUWWd7KN3ITN1mFPtBOrvRbt285yKQUREREREdavJbfNd2ejRjbKPDEXJ1dbQd/0cSvecasdXKDzRNvxFBAVx5IiIiIiIqKFpciNIVy8VVLtu4eUOOLtpJjIO3ovSAr9K65pLPJF99A50jfuRyRERERERUQPV5EaQTCWWGtW3mtxx9dgduHpsENQ+5+Hmkwa11yXIFKUQLQqUFjRHydUQFOe0BqwKyAVuyEBERERE1FA1uQRJppABJmttnoQxJwTGnJDKa8ml2wGPiIiIiIjqVpObYqcL0LgstsZTCZWmyeWcRERERESNRpNLkAJCPF0Xu5WXy2ITEREREZHrNbkEqVW0b4OMTURERERErtfkEqTQjv7w8FZLHlehkiHqVr3kcYmIiIiIqO40uQRJJpchbkAryePG3N4Canel5HGJiIiIiKjuNLkECQA69m0JfZhOsni6AA3ih4VJFo+IiIiIiOpHk0yQBJmAhIeiofFSOR1LqZZj4KMxUKrkEvSMiIiIiIjqU5NMkIBroz53T+kEd13tkySVmxxD/hWLZiHcvY6IiIiIqDFosgkSAPgFaXHfjFsQ1imgxs8GtfXG6Bm3IKitt/QdIyIiIiKietHkTzV191LhjkkdcPZgFg7+ch4XjucAYsX1m4d6oUOfloi4pTkEQai7jhIRERERkcs1+QSpTGhHf4R29Ichqxjpp/OQ+Vc+ivKMEAFotCoEtNKieagOvoEe9d1VIiIiIiJyESZIN/Hy18DLX4PIeJ5pRERERETU1DTpNUhEREREREQ3YoJERERERER0Xb1OsRPFa7shGAyG+uwGERER1UDZz+2yn+NERI1JvSZI+fn5AIDg4OD67AYRERHVQn5+PnQ6XX13g4hIUoJYj3/+sVqtuHTpEjw9PbllNhERUQMhiiLy8/MRFBQEmYyz9YmocanXBImIiIiIiOifhH/2ISIiIiIiuo4JEhERERER0XVMkIiIiIiIiK5jgkRERERERHQdEySiJq5Pnz6YMmVKufJly5bB29sbADBz5kwIgoDBgweXqzd//nwIgoA+ffqUu3fhwgWoVCq0b9/eYduCINgunU6Hnj174pdffrHd3759O4YOHYqgoCAIgoA1a9bU5hWJiIiIqo0JEhFVS2BgILZu3YoLFy7YlS9ZsgStWrVy+MyyZcswevRoGAwG7Nmzx2GdpUuXIj09HTt37oS/vz+GDBmCM2fOAAAKCwsRGxuLDz74QNqXISIiIqoAEyQiqpZmzZph4MCB+Oyzz2xlu3btQlZWFu66665y9UVRxNKlS/HAAw9g3LhxSExMdBjX29sber0e7du3x4cffoji4mJs3rwZAHDHHXdgzpw5GD58uGteioiIiOgmTJCIqNoefvhhLFu2zPb1kiVLcP/990OlUpWru3XrVhQVFSEhIQHjx4/H119/jcLCwkrjazQaAEBpaamk/SYiIiKqLiZIRFRtQ4YMgcFgwPbt21FYWIhVq1bh4Ycfdlg3MTERY8aMgVwuR/v27REWFoZvvvmmwthFRUV48cUXIZfL0bt3b1e9AhEREVGlFPXdASJqOJRKJcaPH4+lS5fizJkziIiIQMeOHcvVy83NxerVq/Hbb7/ZysaPH4/ExERMnDjRru7YsWMhl8tRXFyMgIAAJCYmOoxJREREVBeYIBE1cV5eXsjLyytXnpubC51OV6784YcfRnx8PFJTUyscPfryyy9RUlKC+Ph4W5koirBarThx4gQiIiJs5QsWLEBCQgJ0Oh0CAgIkeCMiIiKi2uMUO6ImLjIyEvv27StXvm/fPrtEpkxMTAxiYmKQmpqKcePGOYyZmJiI5557DikpKbbrwIED6NWrF5YsWWJXV6/XIzw8nMkRERER/SNwBImoiXvyySexaNEiTJ48GY8++ijUajV++OEHfPXVV1i3bp3DZ3755ReYTCbbOUk3SklJwb59+7BixQpERUXZ3Rs7dixmzZqFOXPmQKGo+ttPQUEBTp06Zfv67NmzSElJga+vb4VbixMRERE5gyNIRE1cWFgYtm/fjmPHjiEhIQHx8fFYtWoVvvnmG4cHwwKAh4eHw+QIuDZ6FB0dXS45AoDhw4cjIyMDP/74Y7X6lpycjLi4OMTFxQEAnn32WcTFxeHll1+u3ssRERER1ZAgiqJY350gIiIiIiL6J+AIEhERERER0XVMkIiIiIiIiK5jgkRERERERHQdEyQiIiIiIqLrmCARERERERFdxwSJiIiIiIjoOiZIRERERERE1zFBIiIiIiIiuo4JEhERERER0XVMkIiIiIiIiK5jgkRERERERHQdEyQiIiIiIqLr/h+1BRkUvTfW0QAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "