-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvision.py
252 lines (199 loc) · 7.27 KB
/
vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from camera_manager import CameraManager
from connection import NTConnection
from magic_numbers import (
CONTOUR_TO_BOUNDING_BOX_AREA_RATIO_THRESHOLD,
CONE_HSV_HIGH,
CONE_HSV_LOW,
CUBE_HSV_HIGH,
CUBE_HSV_LOW,
FRAME_WIDTH,
FRAME_HEIGHT,
)
from math import atan2
import cv2
import numpy as np
from helper_types import (
NodeRegionObservation,
NodeRegion,
NodeRegionState,
ExpectedGamePiece,
BoundingBox,
)
from camera_config import CameraParams
from node_map import NodeRegionMap
from wpimath.geometry import Pose2d, Pose3d, Translation3d, Transform3d, Rotation3d
class Vision:
def __init__(self, camera_manager: CameraManager, connection: NTConnection) -> None:
self.camera_manager = camera_manager
self.connection = connection
self.map = NodeRegionMap()
def run(self) -> None:
"""Main process function.
Captures an image, processes the image, and sends results to the RIO.
"""
self.connection.pong()
frame_time, frame = self.camera_manager.get_frame()
# frame time is 0 in case of an error
if frame_time == 0:
self.camera_manager.notify_error(self.camera_manager.get_error())
return
results, display = self.process_image(frame)
if results is not None:
# TODO send results to rio
pass
# send image to display on driverstation
self.camera_manager.send_frame(display)
self.connection.set_fps()
def is_coloured_game_piece(
masked_image: np.ndarray,
lower_colour: np.ndarray,
upper_colour: np.ndarray,
bBox_area: int,
) -> bool:
gamepiece_mask = cv2.inRange(masked_image, lower_colour, upper_colour)
# get largest contour
contours, hierarchy = cv2.findContours(
gamepiece_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
if len(contours) > 0:
# find largest contour in mask, use to compute minEnCircle
biggest_contour = max(contours, key=cv2.contourArea)
# get area of contour
area = cv2.contourArea(biggest_contour)
return area / bBox_area > CONTOUR_TO_BOUNDING_BOX_AREA_RATIO_THRESHOLD
else:
return False
def is_game_piece_present(
frame: np.ndarray, bounding_box: BoundingBox, expected_game_piece: ExpectedGamePiece
) -> bool:
# draw bound box mask
bBox_mask = np.zeros_like(frame)
bBox_mask = cv2.rectangle(
bBox_mask,
(bounding_box.x1, bounding_box.y1),
(bounding_box.x2, bounding_box.y2),
(255, 255, 255),
cv2.FILLED,
)
masked_image = cv2.bitwise_and(frame, bBox_mask)
hsv = cv2.cvtColor(masked_image, cv2.COLOR_BGR2HSV)
cube_present = False
cone_present = False
if (
expected_game_piece == ExpectedGamePiece.BOTH
or expected_game_piece == ExpectedGamePiece.CUBE
):
# run cube mask
lower_purple = CUBE_HSV_LOW
upper_purple = CUBE_HSV_HIGH
cube_present = is_coloured_game_piece(
hsv, lower_purple, upper_purple, bounding_box.area()
)
if (
expected_game_piece == ExpectedGamePiece.BOTH
or expected_game_piece == ExpectedGamePiece.CONE
):
# run cone mask
lower_yellow = CONE_HSV_LOW
upper_yellow = CONE_HSV_HIGH
cone_present = is_coloured_game_piece(
hsv, lower_yellow, upper_yellow, bounding_box.area()
)
return cone_present or cube_present
def process_image(frame: np.ndarray, pose: Pose2d):
# visible_nodes = self.find_visible_nodes(frame, pose)
# node_states = self.detect_node_state(frame, visible_nodes)
# whatever the update step is
# self.map.update(node_states)
# map_state = self.map.get_state()
# annotate frame
# annotated_frame = annotate_image(frame, map_state, node_states)
# return state of map (state of all node regions) and annotated camera stream
return
def find_visible_nodes(frame: np.ndarray, pose: Pose2d) -> list[NodeRegionObservation]:
"""Segment image to find visible nodes in a frame
Args:
frame (np.ndarray): New camera frame containing nodes
pose (Pose2d): Current robot pose in the world frame
Returns:
List[NodeRegionObservation]: List of node region observations with no information about occupancy
"""
pass
def detect_node_state(
frame: np.ndarray, regions_of_interest: list[NodeRegionObservation]
) -> list[NodeRegionObservation]:
"""Detect node occupancy in a set of observed node regions
Args:
frame (np.ndarray): New camera frame containing nodes
regions_of_interest (List[NodeRegionObservation]): List of node region observations with no information about occupancy
Returns:
List[NodeRegionObservation]: List of node region observations
"""
pass
def annotate_image(
frame: np.ndarray,
map: list[NodeRegionState],
node_observations: list[NodeRegionObservation],
) -> np.ndarray:
"""annotate a frame with projected node points
Args:
frame (np.ndarray): raw image frame without annotation
map (List[NodeState]): current map state with information on occupancy state_
node_observations (List[NodeRegionObservation]): node observations in the current time step
Returns:
np.ndarray: frame annotated with observed node regions
"""
pass
def is_node_region_in_image(
robot_pose: Pose2d,
camera_params: CameraParams,
node_region: NodeRegion,
) -> bool:
# create transform to make camera origin
world_to_robot = Transform3d(Pose3d(), Pose3d(robot_pose))
world_to_camera = world_to_robot + camera_params.transform
node_region_camera_frame = (
Pose3d(node_region.position, Rotation3d()) + world_to_camera.inverse()
)
# Check the robot is facing the right direction for the point by checking it is inside the FOV
return point3d_in_field_of_view(
node_region_camera_frame.translation(), camera_params
)
def point3d_in_field_of_view(point: Translation3d, camera_params: CameraParams) -> bool:
"""Determines if a point in 3d space relative to the camera coordinate frame is visible in a camera's field of view
Args:
point (Translation3d): _point in 3d space relative to a camera
camera_params (CameraParams): camera parameters structure providing information about a frame being processed
Returns:
bool: if point is visible
"""
vertical_angle = atan2(point.z, point.x)
horizontal_angle = atan2(point.y, point.x)
return (
(point.x > 0)
and (
-camera_params.get_vertical_fov() / 2
< vertical_angle
< camera_params.get_vertical_fov() / 2
)
and (
-camera_params.get_horizontal_fov() / 2
< horizontal_angle
< camera_params.get_horizontal_fov() / 2
)
)
if __name__ == "__main__":
# this is to run on the robot
# to run vision code on your laptop use sim.py
K = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) # To update
params = CameraParams("Camera", FRAME_WIDTH, FRAME_HEIGHT, Translation3d(), K, 30)
vision = Vision(
CameraManager(
"/dev/video0",
params,
"kYUYV",
),
NTConnection(),
)
while True:
vision.run()