forked from tweecode/twee
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeometry.py
190 lines (158 loc) · 5.52 KB
/
geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
This module has basic utilities for working with wx.Rects
and Lines (which are tuples of wx.Points).
"""
import math, wx
def clipLineByRects(line, *rects):
"""
Clips a line (e.g. an array of wx.Points) so it does
not overlap any of the rects passed. The line must be
the first parameter, but you may pass any number of rects.
"""
result = line
for rect in rects:
for i in range(2):
if rect.Contains(result[i]):
intersection = lineRectIntersection(result, rect, excludeTrivial = True)
if intersection:
result[i] = intersection
break
return result
def endPointProjectedFrom(line, angle, distance):
"""
Projects an endpoint from the second wx.Point of a line at
a given angle and distance. The angle should be given in radians.
"""
length = lineLength(line)
if length == 0: return line[1]
# taken from http://mathforum.org/library/drmath/view/54146.html
lengthRatio = distance / length
x = line[1][0] - ((line[1][0] - line[0][0]) * math.cos(angle) - \
(line[1][1] - line[0][1]) * math.sin(angle)) * lengthRatio
y = line[1][1] - ((line[1][1] - line[0][1]) * math.cos(angle) + \
(line[1][0] - line[0][0]) * math.sin(angle)) * lengthRatio
return wx.Point(x, y)
def pointsToRect(p1, p2):
"""
Returns the smallest wx.Rect that encloses two points.
"""
left = min(p1[0], p2[0])
right = max(p1[0], p2[0])
top = min(p1[1], p2[1])
bottom = max(p1[1], p2[1])
rect = wx.Rect(0, 0, 0, 0)
rect.SetTopLeft((left, top))
rect.SetBottomRight((right, bottom))
return rect
def rectToLines(rect):
"""
Converts a wx.Rect into an array of lines
(e.g. tuples of wx.Points)
"""
topLeft = rect.GetTopLeft()
topRight = rect.GetTopRight()
bottomLeft = rect.GetBottomLeft()
bottomRight = rect.GetBottomRight()
return (topLeft, topRight), (topLeft, bottomLeft), (topRight, bottomRight), \
(bottomLeft, bottomRight)
def lineLength(line):
"""
Returns the length of a line.
"""
return math.sqrt((line[1][0] - line[0][0]) ** 2 + (line[1][1] - line[0][1]) ** 2)
def lineRectIntersection(line, rect, excludeTrivial = False):
"""
Returns a x,y pair corresponding to where a line and a
wx.Rect intersect. If they do not intersect, then None
is returned. This returns the first intersection it happens
to find, not all of them.
By default, it will immediately return an endpoint if one of
them is inside the rectangle. The excludeTrivial prevents
this behavior.
"""
if not excludeTrivial:
for i in range(2):
if rect.Contains(line[i]):
return line[i]
# See Cohen-Sutherland Line-Clipping Algorithm
# pylint: disable=invalid-name
LEFT = 0b0001
RIGHT = 0b0010
BOTTOM = 0b0100
TOP = 0b1000
xmin, ymin = rect.GetTopLeft()
xmax, ymax = rect.GetBottomRight()
def computeCode(x, y):
code = 0
if x < xmin:
code |= LEFT
elif x > xmax:
code |= RIGHT
if y < ymin:
code |= BOTTOM
elif y > ymax:
code |= TOP
return code
x0, y0 = line[0]
x1, y1 = line[1]
codeStart = computeCode(x0, y0)
codeEnd = computeCode(x1, y1)
if (codeStart & codeEnd) != 0:
return None
x, y = 0, 0
while True:
if (codeStart | codeEnd) == 0:
return x, y
elif not (codeStart & codeEnd) == 0:
return None
else:
outsideCode = max(codeStart, codeEnd)
# Checks for trivial cases with horizontal and vertical lines.
if x1 == x0:
if outsideCode & TOP != 0:
return x1, ymax
else:
return x1, ymin
if y1 == y0:
if outsideCode & LEFT != 0:
return xmin, y1
else:
return xmax, y1
if outsideCode & TOP != 0:
x, y = x0 + (x1 - x0) * (ymax - y0) / (y1 - y0), ymax
elif outsideCode & BOTTOM != 0:
x, y = x0 + (x1 - x0) * (ymin - y0) / (y1 - y0), ymin
elif outsideCode & LEFT != 0:
x, y = xmin, y0 + (y1 - y0) * (xmin - x0) / (x1 - x0)
elif outsideCode & RIGHT != 0:
x, y = xmax, y0 + (y1 - y0) * (xmax - x0) / (x1 - x0)
if outsideCode == codeStart:
x0, y0 = x, y
codeStart = computeCode(x0, y0)
else:
x1, y1 = x, y
codeEnd = computeCode(x1, y1)
def lineIntersection(line1, line2):
"""
Returns a wx.Point corresponding to where two line
segments intersect. If they do not intersect, or they are parallel, then None
is returned.
"""
ax1,ay1,ax2,ay2 = line1[0][0],line1[0][1],line1[1][0],line1[1][1]
bx1,by1,bx2,by2 = line2[0][0],line2[0][1],line2[1][0],line2[1][1]
s1x = ax2-ax1
s1y = ay2-ay1
s2x = bx2-bx1
s2y = by2-by1
denominator = float(-s2x * s1y + s1x * s2y)
if denominator == 0:
#Collinear or Parallel returns none as in original
return None
s = (-s1y * (ax1 - bx1) + s1x * (ay1 - by1))
if not 0 <= s <= denominator: return None
t = ( s2x * (ay1 - by1) - s2y * (ax1 - bx1))
if not 0 <= t <= denominator: return None
t /= denominator
ix = ax1 + (t * s1x)
iy = ay1 + (t * s1y)
return wx.Point(ix, iy)