-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplete_ttest.Rmd
134 lines (89 loc) · 2.63 KB
/
complete_ttest.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
title: "complete_ttest"
author: "liuc"
date: '2022-05-31'
output: pdf_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## t-test
https://r4stats.com/articles/add-ons/
详细的T-TEST流程,结果参考SPSS.
应该包括: EDA(尤其对)outcome变量分组的柱状图QQ图、是否满足正态性、方差齐性、观测值之间是否独立、观测值是否存在异常值, 结果如何解读和呈现(mean difference SE CI P-value effect_size ),以表格的形式输出结果。
对于样本量也需要一些先验知识进行确定。以下仅以最为常见的独立样本T检验进行演示,配对样本或独立样本等修改下参数。
```{r}
library(tidyverse)
library(easystats)
library(gtsummary)
# library(expss)# table like SPSS
```
## Step1. EDA以及描述性统计结果
```{r}
df <- haven::read_sav('./datasets/two_sample_ttest.sav') %>%
mutate(gender = as_factor(gender))
# 描述性统计
stderror <- function(x) sd(x)/sqrt(length(x))
df %>% group_by(gender) %>%
summarise(num = n(),
mean = mean(score),
sd = sd(score),
se_mean = stderror(score)
)
# EDA
ggplot(df, aes(x = factor(gender), y = score)) +
geom_boxplot(outlier.colour = 'red') +
theme_bw()
```
## Step2. 满足假设条件
`base`包里的这几个函数都不支持`group_by`的数据, 改用`aggregate`函数进行。
```{r}
# outlier 检查
check_outliers(df, method = 'iqr')
# 正态性检验
aggregate(formula = score ~ gender,
data = df,
FUN = function(x) {y <- shapiro.test(x); c(statistic = y$statistic, pvalue = y$p.value)}
)
df %>%
group_by(gender) %>%
summarise(statistic = shapiro.test(score)$statistic,
p.value = shapiro.test(score)$p.value)
# 方差齐性检验,在SPSS中center默认的是mean
car::leveneTest(data = df,
y = score ~ gender,
center = 'median'
)
```
## Step3. ttest检验以及结果呈现
`htest`对象的结果提取不如`lm`类更为简单呀。
```{r}
t_res <- t.test(
formula = score ~ gender,
data = df,
alternative = 'two.sided',
paired = FALSE,
var.equal = TRUE
)
t_res
# effect size
effectsize::effectsize(t_res)
# 以tibble表格的形式呈现结果
final_res <- tibble(
t = t_res$statistic,
pvalue = t_res$p.value,
group1_mean = t_res$estimate[[1]],
group2_mean = t_res$estimate[[2]],
ci_up = t_res$conf.int[1],
ci_down = t_res$conf.int[2]
)
final_res
```
绘制95%CI的示意图:
```{r}
```
线性模型等价分析
```{r}
res <- lm(formula = score ~ gender, data = df)
effectsize(res)
```