-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuantile_regression.qmd
65 lines (40 loc) · 1.27 KB
/
Quantile_regression.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
title: "Quantile regression"
format: html
---
## Quantile regression
分位数回归(Quantile regression, QR回归),其原理是将数据按因变量进行拆分成多个分位数点,研究不同分位点情况下时的回归影响关系情况。
中位数回归的估计方法与最小二乘法相比,估计结果对离群值(极值)则表现的更加稳健.
分位数回归对误差项不要求“误差项呈正态分布”。因此对于非正态分布而言,分位数回归系数 估计量则更加稳健。
```{r}
library(easystats)
library(quantreg)
```
```{r}
# Model: Quantile Regression
Quan_fit <- quantreg::rq(disp ~ wt, data = mtcars,
tau = 0.5 # f分为数
)
Quan_fit
# Summary of Model
summary(Quan_fit)
```
```{r}
# Plot
plot(disp ~ wt, data = mtcars, pch = 16, main = "Plot")
abline(lm(disp ~ wt, data = mtcars), col = "red", lty = 2)
abline(rq(disp ~ wt, data = mtcars), col = "blue", lty = 2)
```
```{r}
require(ggplot2)
#create scatterplot with quantile regression line
ggplot(mtcars, aes(wt,disp)) +
geom_point() +
geom_abline(intercept=coef(Quan_fit)[1], slope=coef(Quan_fit)[2]) +
geom_smooth(method="lm", se=F)
```
```{r}
performance::performance(Quan_fit)
```
```{r}
```